[ Search |  Up Level |  Project home |  Index |  Class hierarchy ]

 WolpinJPE1984.ox

Replicate Tables 8 and 9 of Wolpin (1982), Yale Economic Growth Center Working Paper No. 424.

This paper was published in the JPE 1984. The published version makes references to these tables but they are not included.

The parameter estimates differ between the working paper and the article. The working paper version are used for the replication, but the published estimates are given as well.

The Model

Clock: Finite Horizon, \(t = 0, 1, \dots, 19,\dots 29\).
Action Vector: \(\alpha = (n)\), \(n \in \{0,1\}\)
\(n\) is the choice to have another child or not.
Endogenous State Vector: \(\theta = (M)\)
M = number of children at the start of \(t\)
Newborns die with a probability that depends on the mother's age \(t\): $$p = Prob(death) = Prob(d=1) Logit(a_0 + a_1 t)$$
The stock of children evolves as $$M' = \cases{ M + 1 & with prob. (1-p)n\cr M & otherwise.\cr.} $$
Feasible Actions
The woman is fertile for 20 years
\(A(\theta) = \cases{ \{0,1\} &if t< 20\cr \{0\} &if t= 20\cr}\)
Exogenous State
\(\epsilon = (\psi)\), and \(\psi \sim dN(0,1)\)
Note:The paper solves for cut-off value of \(\psi\) for having a child. This would be a OneDimensionalChoice() and use of the ReservationValue method. Instead, the replication simply draws 201 discrete values of \(\psi\) and makes the optimal choice.
Income
$$X = Y - ( b(n-d) + (c_1I_{t=1} + c_2I_{t=2}+ c_{30}+c_{31}t+c_{32}t^2))n.$$
Utility
The model's timing assumes that infant mortality is realized after choosing \(n_t\) but before the end of \(t\) and before utility is realized. Thus utility is an expectation over \(d_t\).
$$\eqalign{ M* &= M+n-d\cr U(n,d) &= (\alpha_1+\psi)M* +\alpha_2(M*)^2+ \beta_1X+\beta_2X^2 + \gamma_1M*X+\gamma_2M*S.\cr EU(0) &= U(0,0)\cr EU(1) &= (1-p)U(1,0)+pU(1,0)\cr}$$

Replication

Table 5. Estimated and Replicated Birth Probabilities

       t      Predicted    Replicated
              Probability  Probability
       --------------------------------
       0      .138         0.13930
       1      .360         0.37811
       2      .552         0.54229
       3      .543         0.53234
       4      .530         0.52239
       5      .515         0.50746
       6      .498         0.49254
       7      .477         0.47264
       8      .454         0.44776
       9      .428         0.42289
      10      .400         0.39801
      11      .376         0.36816
      12      .345         0.33831
      13      .313         0.30630
      14      .281         0.27363
      15      .250         0.23881
      16      .216         0.20701
      17      .182         0.17413
      18      .149         0.14428
      19      .122         0.11473
      -----------------------------

Effects of ln Y = a00+a01t

Table 8. Working Paper Page 45.
aOa1YN1-5N6-10N11-15 N16-20N
9.35O11,5002.1242.3691.687.8677.047
8.52O5,0002.1172.3621.682.8637.024
9.21O10,0002.1212.3671.685.8667.039
10.13O25,0002.1342.3801.699.8737.086
10.82O50,0002.1542.4021.717.8857.158
8.52.08811,5002.1262.3761.769.8757.146
Replicated
 Table of Working Paper 8, page 45
 ----------------------------------
     row    N1-5   N6-10  N11-15  N16-20       N
  1.0000  2.1144  2.3433  1.6844  0.8790  6.5029
  2.0000  2.0939  2.3163  1.6614  0.8703  6.0759
  3.0000  2.0647  2.2883  1.6368  0.8557  5.6648
  4.0000  2.0380  2.2587  1.6156  0.8438  5.2564
  5.0000  2.0100  2.2331  1.5920  0.8261  4.8533
  6.0000  2.1443  2.3775  1.7088  0.8986  6.9975

Table 9. Effects of ln (p/1-p) = a10+a11t

aOa1pN1-5N6-10N11-15 N16-20N
2.78O.942.1242.3691.687.8677.047
2.09O.892.0782.3261.614.7836.801
1.67O.842.0322.2821.540.7016.555
1.33O.791.9792.2301.453.6126.274
1.05O.741.9272.1751.367.5326.001
1.051.81.942.0032.3561.722.9377.018
Replicated
 Table of Working Paper 9, page 47
 ----------------------------------
     row    N1-5   N6-10  N11-15  N16-20       N
  1.0000  2.1144  2.3433  1.6844  0.8790  6.5029
  2.0000  2.1095  2.3380  1.6816  0.8767  6.4888
  3.0000  2.1144  2.3433  1.6833  0.8787  6.5019
  4.0000  2.1294  2.3578  1.6890  0.8844  6.5380
  5.0000  2.1443  2.3728  1.7081  0.8990  6.5956
  6.0000  2.1244  2.3532  1.6926  0.8949  6.5400

 Fertility

Wolpin 1984 fertility model
Public fields
 aa static const
 ab static const
 alph static const Parameters from the 1982 working paper version.
 b static const
 bet static const
 c static const
 delt static const
 EMax static solution method.
 gam static const
 M static stock of children
 n static decision variable
 PD static PanelPrediction.
 prow static row of birth prob.
 psi static shock to preferences \(\psi\)
 Sbar static const
 Yrow static row of income table.
Public methods
 FeasibleActions Return A(θ).
 Mortality static Returns current time-specific transition of number of children.
 Replicate static Run the replication, compute predictions.
 TimeEffect static Compute \(\pmatrix{1 & t}coeff\).
 Utility Utility.
Enumerations
 Anonymous enum 1 State space dimensions.

 Fertility

Enumerations
Anonymous enum 1 State space dimensions. @names dimens T, tau, Ndraws, Mmax

 aa

static const decl aa [public]

 ab

static const decl ab [public]

 alph

static const decl alph [public]
Parameters from the 1982 working paper version.

 b

static const decl b [public]

 bet

static const decl bet [public]

 c

static const decl c [public]

 delt

static const decl delt [public]

 EMax

static decl EMax [public]
solution method.

 FeasibleActions

Fertility :: FeasibleActions ( )
Return A(θ). Fertility is not a feasible choice for t>T-1

 gam

static const decl gam [public]

 M

static decl M [public]
stock of children

 Mortality

static Fertility :: Mortality ( )
Returns current time-specific transition of number of children. Since \(M\) is a RandomUpDown() state variable this returns a row vector of three probailities for \(M'\) equal to \(M-1,M,M+1\), respectively. In the paper's notation: $$p = Prob(death) = Prob(d=1) Logit(a_0 + a_1 t)$$ Here the three probabilities are \(\pmatrix{0 & (1-np) & pn}\).

 n

static decl n [public]
decision variable

 PD

static decl PD [public]
PanelPrediction.

 prow

static decl prow [public]
row of birth prob. table.

 psi

static decl psi [public]
shock to preferences \(\psi\)

 Replicate

static Fertility :: Replicate ( )
Run the replication, compute predictions.

 Sbar

static const decl Sbar [public]

 TimeEffect

static Fertility :: TimeEffect ( coeff )
Compute \(\pmatrix{1 & t}coeff\).

 Utility

Fertility :: Utility ( )
Utility.
$$\eqalign{ X &= Y - ( b(n-d) + (c_1I_{t=1} + c_2I_{t=2}+ c_{30}+c_{31}t+c_{32}t^2))n.\cr M* &= M+n-d\cr RU(n,M) &= (\alpha_1+\psi)M* +\alpha_2(M*)^2+ \beta_1X+\beta_2X^2 + \gamma_1M*X+\gamma_2M*S.\cr EU(0) &= RU(0,M)\cr EU(1) &= (1-p)RU(1,M+1)+pRU(1,M)\cr}$$

 Yrow

static decl Yrow [public]
row of income table.