[ Search |  Up Level |  Project home |  Index |  Class hierarchy ]

 RunMLogitTest.ox

Replicate mlogit example in Stata using the MLogit objective.
    decl ml = new MLogit("Test","mlogit_example.dta","insure",
                    "age male nonwhite isite2 isite3");
    ml->Estimate();
Stata Output
. webuse sysdsn1
(Health insurance data)

. mlogit insure age male nonwhite i.site

Iteration 0: log likelihood = -555.85446 Iteration 1: log likelihood = -534.67443 Iteration 2: log likelihood = -534.36284 Iteration 3: log likelihood = -534.36165 Iteration 4: log likelihood = -534.36165

Multinomial logistic regression Number of obs = 615 LR chi2(10) = 42.99 Prob > chi2 = 0.0000 Log likelihood = -534.36165 Pseudo R2 = 0.0387

------------------------------------------------------------------------------ insure | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- Indemnity | (base outcome) -------------+---------------------------------------------------------------- Prepaid | age | -.011745 .0061946 -1.90 0.058 -.0238862 .0003962 male | .5616934 .2027465 2.77 0.006 .1643175 .9590693 nonwhite | .9747768 .2363213 4.12 0.000 .5115955 1.437958 | site | 2 | .1130359 .2101903 0.54 0.591 -.2989296 .5250013 3 | -.5879879 .2279351 -2.58 0.010 -1.034733 -.1412433 | _cons | .2697127 .3284422 0.82 0.412 -.3740222 .9134476 -------------+---------------------------------------------------------------- Uninsure | age | -.0077961 .0114418 -0.68 0.496 -.0302217 .0146294 male | .4518496 .3674867 1.23 0.219 -.268411 1.17211 nonwhite | .2170589 .4256361 0.51 0.610 -.6171725 1.05129 | site | 2 | -1.211563 .4705127 -2.57 0.010 -2.133751 -.2893747 3 | -.2078123 .3662926 -0.57 0.570 -.9257327 .510108 | _cons | -1.286943 .5923219 -2.17 0.030 -2.447872 -.1260134 ------------------------------------------------------------------------------

My Output (may be out of date)
Output of Miscellaneous:MLogit
---------------------------
Default value of Y =  1

sample size mean st.dev. min max insure 615.00 1.5967 0.62208 1.0000 3.0000 age 615.00 44.468 14.174 18.111 86.073 male 615.00 0.25041 0.43325 0.00000 1.0000 nonwhite 615.00 0.19675 0.39754 0.00000 1.0000 isite2 615.00 0.37073 0.48300 0.00000 1.0000 isite3 615.00 0.31382 0.46404 0.00000 1.0000 Cons 615.00 1.0000 0.00000 1.0000 1.0000

sample size mean st.dev. min max Y indices 615.00 0.59675 0.62208 0.00000 2.0000 -675.64641529*

Report of Gradient Starting on Test

Obj= -675.646557531 Free Parameters index free Y=2:age 6 0.000000000000 Y=2:male 7 0.000000000000 Y=2:nonwhite 8 0.000000000000 Y=2:isite2 9 0.000000000000 Y=2:isite3 10 0.000000000000 Y=2:Cons 11 0.000000000000 Y=3:age 12 0.000000000000 Y=3:male 13 0.000000000000 Y=3:nonwhite 14 0.000000000000 Y=3:isite2 15 0.000000000000 Y=3:isite3 16 0.000000000000 Y=3:Cons 17 0.000000000000 Actual Parameters Value Y=10 0.000000000000 Y=11 0.000000000000 Y=12 0.000000000000 Y=13 0.000000000000 Y=14 0.000000000000 Y=15 0.000000000000 Y=2:age 0.000000000000 Y=2:male 0.000000000000 Y=2:nonwhite 0.000000000000 Y=2:isite2 0.000000000000 Y=2:isite3 0.000000000000 Y=2:Cons 0.000000000000 Y=3:age 0.000000000000 Y=3:male 0.000000000000 Y=3:nonwhite 0.000000000000 Y=3:isite2 0.000000000000 Y=3:isite3 0.000000000000 Y=3:Cons 0.000000000000 -674.55505484* -672.80266631* -670.00295491* -665.56576072* -658.62639209* -648.01436402* -632.40049455* -565.17592819* -555.43249993* -555.37824425* -555.37823104* 1. f=-555.378 deltaX: 2.35698 deltaG: 588.098

Report of Gradient Iteration on Test

Obj= -555.378244250 Free Parameters index free Y=2:age 6-7.60231935463e-05 Y=2:male 7 -0.00187253985150 Y=2:nonwhite 8-3.05392001873e-05 Y=2:isite2 9-1.41592959729e-05 Y=2:isite3 10-1.66925131649e-05 Y=2:Cons 11-2.54740211765e-06 Y=3:age 12-1.44712465017e-05 Y=3:male 13 -0.00290140273033 Y=3:nonwhite 14 -0.00107782244121 Y=3:isite2 15 -0.00107912547628 Y=3:isite3 16 0.847612781393 Y=3:Cons 17 -2.19929868522 Actual Parameters Value Y=10 0.000000000000 Y=11 0.000000000000 Y=12 0.000000000000 Y=13 0.000000000000 Y=14 0.000000000000 Y=15 0.000000000000 Y=2:age -7.60231935463e-05 Y=2:male -0.00187253985150 Y=2:nonwhite -3.05392001873e-05 Y=2:isite2 -1.41592959729e-05 Y=2:isite3 -1.66925131649e-05 Y=2:Cons -2.54740211765e-06 Y=3:age -1.44712465017e-05 Y=3:male -0.00290140273033 Y=3:nonwhite -0.00107782244121 Y=3:isite2 -0.00107912547628 Y=3:isite3 0.847612781393 Y=3:Cons -2.19929868522 -535.52827716* -535.52825624* 2. f=-535.528 deltaX: 1.92099 deltaG: 54.9699

Report of Gradient Iteration on Test

Obj= -535.528277157 Free Parameters index free Y=2:age 6 -0.0100527628962 Y=2:male 7 0.532246731094 Y=2:nonwhite 8 0.887579141502 Y=2:isite2 9 0.0903589837479 Y=2:isite3 10 -0.564902436855 Y=2:Cons 11 0.217226866645 Y=3:age 12 0.00474554321745 Y=3:male 13 0.183185866679 Y=3:nonwhite 14 0.152895014321 Y=3:isite2 15 -1.20346180970 Y=3:isite3 16 0.0302907266284 Y=3:Cons 17 -1.93392071034 Actual Parameters Value Y=10 0.000000000000 Y=11 0.000000000000 Y=12 0.000000000000 Y=13 0.000000000000 Y=14 0.000000000000 Y=15 0.000000000000 Y=2:age -0.0100527628962 Y=2:male 0.532246731094 Y=2:nonwhite 0.887579141502 Y=2:isite2 0.0903589837479 Y=2:isite3 -0.564902436855 Y=2:Cons 0.217226866645 Y=3:age 0.00474554321745 Y=3:male 0.183185866679 Y=3:nonwhite 0.152895014321 Y=3:isite2 -1.20346180970 Y=3:isite3 0.0302907266284 Y=3:Cons -1.93392071034 -534.58759809* -534.55024518* -534.55023884* 3. f=-534.55 deltaX: 0.686757 deltaG: 53.0643

Report of Gradient Iteration on Test

Obj= -534.550245181 Free Parameters index free Y=2:age 6 -0.0117193850291 Y=2:male 7 0.556381506602 Y=2:nonwhite 8 0.964747635917 Y=2:isite2 9 0.114420260032 Y=2:isite3 10 -0.580961478711 Y=2:Cons 11 0.268111835082 Y=3:age 12 -0.00835321843963 Y=3:male 13 0.364418929672 Y=3:nonwhite 14 0.347191111055 Y=3:isite2 15 -1.04652423147 Y=3:isite3 16 -0.130789545464 Y=3:Cons 17 -1.35054765039 Actual Parameters Value Y=10 0.000000000000 Y=11 0.000000000000 Y=12 0.000000000000 Y=13 0.000000000000 Y=14 0.000000000000 Y=15 0.000000000000 Y=2:age -0.0117193850291 Y=2:male 0.556381506602 Y=2:nonwhite 0.964747635917 Y=2:isite2 0.114420260032 Y=2:isite3 -0.580961478711 Y=2:Cons 0.268111835082 Y=3:age -0.00835321843963 Y=3:male 0.364418929672 Y=3:nonwhite 0.347191111055 Y=3:isite2 -1.04652423147 Y=3:isite3 -0.130789545464 Y=3:Cons -1.35054765039 -534.40701257* -534.40424989* -534.39683997* -534.39683756* 4. f=-534.397 deltaX: 0.195916 deltaG: 5.73388

Report of Gradient Iteration on Test

Obj= -534.396839974 Free Parameters index free Y=2:age 6 -0.0116267548883 Y=2:male 7 0.560758428396 Y=2:nonwhite 8 0.969463632119 Y=2:isite2 9 0.110547350397 Y=2:isite3 10 -0.589121880197 Y=2:Cons 11 0.266829639864 Y=3:age 12 -0.00547567110409 Y=3:male 13 0.405816263792 Y=3:nonwhite 14 0.223249074362 Y=3:isite2 15 -1.17279317293 Y=3:isite3 16 -0.175073316547 Y=3:Cons 17 -1.40773050528 Actual Parameters Value Y=10 0.000000000000 Y=11 0.000000000000 Y=12 0.000000000000 Y=13 0.000000000000 Y=14 0.000000000000 Y=15 0.000000000000 Y=2:age -0.0116267548883 Y=2:male 0.560758428396 Y=2:nonwhite 0.969463632119 Y=2:isite2 0.110547350397 Y=2:isite3 -0.589121880197 Y=2:Cons 0.266829639864 Y=3:age -0.00547567110409 Y=3:male 0.405816263792 Y=3:nonwhite 0.223249074362 Y=3:isite2 -1.17279317293 Y=3:isite3 -0.175073316547 Y=3:Cons -1.40773050528 -534.36838112* -534.36833561* -534.36833482* 5. f=-534.368 deltaX: 0.111882 deltaG: 2.61384

Report of Gradient Iteration on Test

Obj= -534.368335611 Free Parameters index free Y=2:age 6 -0.0117605888148 Y=2:male 7 0.561216707653 Y=2:nonwhite 8 0.974656106078 Y=2:isite2 9 0.113637071064 Y=2:isite3 10 -0.587594103797 Y=2:Cons 11 0.269984185324 Y=3:age 12 -0.00768522745231 Y=3:male 13 0.437174321062 Y=3:nonwhite 14 0.245606054187 Y=3:isite2 15 -1.17557329357 Y=3:isite3 16 -0.197334831978 Y=3:Cons 17 -1.30537223647 Actual Parameters Value Y=10 0.000000000000 Y=11 0.000000000000 Y=12 0.000000000000 Y=13 0.000000000000 Y=14 0.000000000000 Y=15 0.000000000000 Y=2:age -0.0117605888148 Y=2:male 0.561216707653 Y=2:nonwhite 0.974656106078 Y=2:isite2 0.113637071064 Y=2:isite3 -0.587594103797 Y=2:Cons 0.269984185324 Y=3:age -0.00768522745231 Y=3:male 0.437174321062 Y=3:nonwhite 0.245606054187 Y=3:isite2 -1.17557329357 Y=3:isite3 -0.197334831978 Y=3:Cons -1.30537223647 -534.36314842* -534.36301867* -534.36301854* 6. f=-534.363 deltaX: 0.0412559 deltaG: 3.56314

Report of Gradient Iteration on Test

Obj= -534.363018670 Free Parameters index free Y=2:age 6 -0.0117290795474 Y=2:male 7 0.561692557753 Y=2:nonwhite 8 0.974416537032 Y=2:isite2 9 0.112624380757 Y=2:isite3 10 -0.588501941644 Y=2:Cons 11 0.269376024257 Y=3:age 12 -0.00727105321850 Y=3:male 13 0.444428852108 Y=3:nonwhite 14 0.218817924080 Y=3:isite2 15 -1.20467736013 Y=3:isite3 16 -0.203904159517 Y=3:Cons 17 -1.31161253856 Actual Parameters Value Y=10 0.000000000000 Y=11 0.000000000000 Y=12 0.000000000000 Y=13 0.000000000000 Y=14 0.000000000000 Y=15 0.000000000000 Y=2:age -0.0117290795474 Y=2:male 0.561692557753 Y=2:nonwhite 0.974416537032 Y=2:isite2 0.112624380757 Y=2:isite3 -0.588501941644 Y=2:Cons 0.269376024257 Y=3:age -0.00727105321850 Y=3:male 0.444428852108 Y=3:nonwhite 0.218817924080 Y=3:isite2 -1.20467736013 Y=3:isite3 -0.203904159517 Y=3:Cons -1.31161253856 -534.36199134* -534.36193806* -534.36193786* 7. f=-534.362 deltaX: 0.0234443 deltaG: 0.78376

Report of Gradient Iteration on Test

Obj= -534.361938056 Free Parameters index free Y=2:age 6 -0.0117528877771 Y=2:male 7 0.561619476487 Y=2:nonwhite 8 0.974986471555 Y=2:isite2 9 0.113241654351 Y=2:isite3 10 -0.587919731469 Y=2:Cons 11 0.269891019385 Y=3:age 12 -0.00779647867671 Y=3:male 13 0.449507727570 Y=3:nonwhite 14 0.223764677816 Y=3:isite2 15 -1.20395221105 Y=3:isite3 16 -0.206373111203 Y=3:Cons 17 -1.28945051708 Actual Parameters Value Y=10 0.000000000000 Y=11 0.000000000000 Y=12 0.000000000000 Y=13 0.000000000000 Y=14 0.000000000000 Y=15 0.000000000000 Y=2:age -0.0117528877771 Y=2:male 0.561619476487 Y=2:nonwhite 0.974986471555 Y=2:isite2 0.113241654351 Y=2:isite3 -0.587919731469 Y=2:Cons 0.269891019385 Y=3:age -0.00779647867671 Y=3:male 0.449507727570 Y=3:nonwhite 0.223764677816 Y=3:isite2 -1.20395221105 Y=3:isite3 -0.206373111203 Y=3:Cons -1.28945051708 -534.36172781* -534.36171804* -534.36170864* -534.36170860* 8. f=-534.362 deltaX: 0.00869961 deltaG: 0.865073

Report of Gradient Iteration on Test

Obj= -534.361708638 Free Parameters index free Y=2:age 6 -0.0117431978357 Y=2:male 7 0.561695733395 Y=2:nonwhite 8 0.974767307364 Y=2:isite2 9 0.112976017635 Y=2:isite3 10 -0.588096396680 Y=2:Cons 11 0.269683580399 Y=3:age 12 -0.00769128442119 Y=3:male 13 0.450344033052 Y=3:nonwhite 14 0.217901844784 Y=3:isite2 15 -1.20975680526 Y=3:isite3 16 -0.207101700658 Y=3:Cons 17 -1.29193586279 Actual Parameters Value Y=10 0.000000000000 Y=11 0.000000000000 Y=12 0.000000000000 Y=13 0.000000000000 Y=14 0.000000000000 Y=15 0.000000000000 Y=2:age -0.0117431978357 Y=2:male 0.561695733395 Y=2:nonwhite 0.974767307364 Y=2:isite2 0.112976017635 Y=2:isite3 -0.588096396680 Y=2:Cons 0.269683580399 Y=3:age -0.00769128442119 Y=3:male 0.450344033052 Y=3:nonwhite 0.217901844784 Y=3:isite2 -1.20975680526 Y=3:isite3 -0.207101700658 Y=3:Cons -1.29193586279 -534.36166118* -534.36166114* 9. f=-534.362 deltaX: 0.00511699 deltaG: 0.183982

Report of Gradient Iteration on Test

Obj= -534.361661178 Free Parameters index free Y=2:age 6 -0.0117471893937 Y=2:male 7 0.561678373997 Y=2:nonwhite 8 0.974839112563 Y=2:isite2 9 0.113090461324 Y=2:isite3 10 -0.587965524629 Y=2:Cons 11 0.269763186593 Y=3:age 12 -0.00780587654440 Y=3:male 13 0.451494725396 Y=3:nonwhite 14 0.218510212682 Y=3:isite2 15 -1.21002712006 Y=3:isite3 16 -0.207595991030 Y=3:Cons 17 -1.28702497003 Actual Parameters Value Y=10 0.000000000000 Y=11 0.000000000000 Y=12 0.000000000000 Y=13 0.000000000000 Y=14 0.000000000000 Y=15 0.000000000000 Y=2:age -0.0117471893937 Y=2:male 0.561678373997 Y=2:nonwhite 0.974839112563 Y=2:isite2 0.113090461324 Y=2:isite3 -0.587965524629 Y=2:Cons 0.269763186593 Y=3:age -0.00780587654440 Y=3:male 0.451494725396 Y=3:nonwhite 0.218510212682 Y=3:isite2 -1.21002712006 Y=3:isite3 -0.207595991030 Y=3:Cons -1.28702497003 -534.36165317* -534.36165099* -534.36165097* 10. f=-534.362 deltaX: 0.00169821 deltaG: 0.155233

Report of Gradient Iteration on Test

Obj= -534.361650986 Free Parameters index free Y=2:age 6 -0.0117450577617 Y=2:male 7 0.561692232033 Y=2:nonwhite 8 0.974787277172 Y=2:isite2 9 0.113034053843 Y=2:isite3 10 -0.588003487634 Y=2:Cons 11 0.269716757628 Y=3:age 12 -0.00778025829240 Y=3:male 13 0.451563306636 Y=3:nonwhite 14 0.217397310125 Y=3:isite2 15 -1.21106296906 Y=3:isite3 16 -0.207677520025 Y=3:Cons 17 -1.28776706637 Actual Parameters Value Y=10 0.000000000000 Y=11 0.000000000000 Y=12 0.000000000000 Y=13 0.000000000000 Y=14 0.000000000000 Y=15 0.000000000000 Y=2:age -0.0117450577617 Y=2:male 0.561692232033 Y=2:nonwhite 0.974787277172 Y=2:isite2 0.113034053843 Y=2:isite3 -0.588003487634 Y=2:Cons 0.269716757628 Y=3:age -0.00778025829240 Y=3:male 0.451563306636 Y=3:nonwhite 0.217397310125 Y=3:isite2 -1.21106296906 Y=3:isite3 -0.207677520025 Y=3:Cons -1.28776706637 -534.36164909* -534.36164895* -534.36164891* -534.36164891* 11. f=-534.362 deltaX: 0.00102409 deltaG: 0.0213223

Report of Gradient Iteration on Test

Obj= -534.361648911 Free Parameters index free Y=2:age 6 -0.0117452380421 Y=2:male 7 0.561691891827 Y=2:nonwhite 8 0.974783431311 Y=2:isite2 9 0.113042206228 Y=2:isite3 10 -0.587984273841 Y=2:Cons 11 0.269718300678 Y=3:age 12 -0.00779854149515 Y=3:male 13 0.451834716074 Y=3:nonwhite 14 0.217193906513 Y=3:isite2 15 -1.21143275434 Y=3:isite3 16 -0.207800710727 Y=3:Cons 17 -1.28688331744 Actual Parameters Value Y=10 0.000000000000 Y=11 0.000000000000 Y=12 0.000000000000 Y=13 0.000000000000 Y=14 0.000000000000 Y=15 0.000000000000 Y=2:age -0.0117452380421 Y=2:male 0.561691891827 Y=2:nonwhite 0.974783431311 Y=2:isite2 0.113042206228 Y=2:isite3 -0.587984273841 Y=2:Cons 0.269718300678 Y=3:age -0.00779854149515 Y=3:male 0.451834716074 Y=3:nonwhite 0.217193906513 Y=3:isite2 -1.21143275434 Y=3:isite3 -0.207800710727 Y=3:Cons -1.28688331744 -534.36164885* -534.36164881* -534.36164881* 12. f=-534.362 deltaX: 0.000194352 deltaG: 0.0109102

Report of Gradient Iteration on Test

Obj= -534.361648806 Free Parameters index free Y=2:age 6 -0.0117449874937 Y=2:male 7 0.561693427025 Y=2:nonwhite 8 0.974777472372 Y=2:isite2 9 0.113035541801 Y=2:isite3 10 -0.587989156621 Y=2:Cons 11 0.269712886412 Y=3:age 12 -0.00779500082257 Y=3:male 13 0.451831762096 Y=3:nonwhite 14 0.217076594980 Y=3:isite2 15 -1.21153471366 Y=3:isite3 16 -0.207804488345 Y=3:Cons 17 -1.28699926582 Actual Parameters Value Y=10 0.000000000000 Y=11 0.000000000000 Y=12 0.000000000000 Y=13 0.000000000000 Y=14 0.000000000000 Y=15 0.000000000000 Y=2:age -0.0117449874937 Y=2:male 0.561693427025 Y=2:nonwhite 0.974777472372 Y=2:isite2 0.113035541801 Y=2:isite3 -0.587989156621 Y=2:Cons 0.269712886412 Y=3:age -0.00779500082257 Y=3:male 0.451831762096 Y=3:nonwhite 0.217076594980 Y=3:isite2 -1.21153471366 Y=3:isite3 -0.207804488345 Y=3:Cons -1.28699926582 -534.36164880* -534.36164880* -534.36164880* 13. f=-534.362 deltaX: 6.45179e-05 deltaG: 0.00201316

Report of Gradient Iteration on Test

Obj= -534.361648799 Free Parameters index free Y=2:age 6 -0.0117450118861 Y=2:male 7 0.561693269874 Y=2:nonwhite 8 0.974777417800 Y=2:isite2 9 0.113036468871 Y=2:isite3 10 -0.587987596286 Y=2:Cons 11 0.269713233455 Y=3:age 12 -0.00779634127403 Y=3:male 13 0.451847490164 Y=3:nonwhite 14 0.217072877670 Y=3:isite2 15 -1.21154887247 Y=3:isite3 16 -0.207810784080 Y=3:Cons 17 -1.28693880081 Actual Parameters Value Y=10 0.000000000000 Y=11 0.000000000000 Y=12 0.000000000000 Y=13 0.000000000000 Y=14 0.000000000000 Y=15 0.000000000000 Y=2:age -0.0117450118861 Y=2:male 0.561693269874 Y=2:nonwhite 0.974777417800 Y=2:isite2 0.113036468871 Y=2:isite3 -0.587987596286 Y=2:Cons 0.269713233455 Y=3:age -0.00779634127403 Y=3:male 0.451847490164 Y=3:nonwhite 0.217072877670 Y=3:isite2 -1.21154887247 Y=3:isite3 -0.207810784080 Y=3:Cons -1.28693880081 -534.36164880* -534.36164880* -534.36164880* 14. f=-534.362 deltaX: 1.89573e-05 deltaG: 0.00120423

Report of Gradient Iteration on Test

Obj= -534.361648798 Free Parameters index free Y=2:age 6 -0.0117449878302 Y=2:male 7 0.561693423847 Y=2:nonwhite 8 0.974776852797 Y=2:isite2 9 0.113035824220 Y=2:isite3 10 -0.587988065731 Y=2:Cons 11 0.269712715391 Y=3:age 12 -0.00779600875833 Y=3:male 13 0.451847496268 Y=3:nonwhite 14 0.217061164596 Y=3:isite2 15 -1.21155927093 Y=3:isite3 16 -0.207811335736 Y=3:Cons 17 -1.28694940236 Actual Parameters Value Y=10 0.000000000000 Y=11 0.000000000000 Y=12 0.000000000000 Y=13 0.000000000000 Y=14 0.000000000000 Y=15 0.000000000000 Y=2:age -0.0117449878302 Y=2:male 0.561693423847 Y=2:nonwhite 0.974776852797 Y=2:isite2 0.113035824220 Y=2:isite3 -0.587988065731 Y=2:Cons 0.269712715391 Y=3:age -0.00779600875833 Y=3:male 0.451847496268 Y=3:nonwhite 0.217061164596 Y=3:isite2 -1.21155927093 Y=3:isite3 -0.207811335736 Y=3:Cons -1.28694940236 -534.36164880* -534.36164880* -534.36164880* 15. f=-534.362 deltaX: 7.28111e-06 deltaG: 0.000196494

Report of Gradient Iteration on Test

Obj= -534.361648798 Free Parameters index free Y=2:age 6 -0.0117449903843 Y=2:male 7 0.561693413358 Y=2:nonwhite 8 0.974776855670 Y=2:isite2 9 0.113035916282 Y=2:isite3 10 -0.587987906301 Y=2:Cons 11 0.269712753776 Y=3:age 12 -0.00779615284980 Y=3:male 13 0.451849359063 Y=3:nonwhite 14 0.217060410875 Y=3:isite2 15 -1.21156123681 Y=3:isite3 16 -0.207812146853 Y=3:Cons 17 -1.28694273920 Actual Parameters Value Y=10 0.000000000000 Y=11 0.000000000000 Y=12 0.000000000000 Y=13 0.000000000000 Y=14 0.000000000000 Y=15 0.000000000000 Y=2:age -0.0117449903843 Y=2:male 0.561693413358 Y=2:nonwhite 0.974776855670 Y=2:isite2 0.113035916282 Y=2:isite3 -0.587987906301 Y=2:Cons 0.269712753776 Y=3:age -0.00779615284980 Y=3:male 0.451849359063 Y=3:nonwhite 0.217060410875 Y=3:isite2 -1.21156123681 Y=3:isite3 -0.207812146853 Y=3:Cons -1.28694273920 -534.36164880* -534.36164880*

Finished: 3:WEAK Y=2:age Y=2:male Y=2:nonwhite Y=2:isite2 Y=2:isite3 Y=2:Cons Y=3:age Y=3:male Y=3:nonwhite Y=3:isite2 Y=3:isite3 Y=3:Cons Free Vector -0.011745 0.56169 0.97478 0.11304 -0.58799 0.26971 -0.0077961 0.45185 0.21706 -1.2116 -0.20781 -1.2869 Gradient 6.4692e-05 -9.5020e-07 1.0507e-06 8.4777e-07 6.7238e-07 3.5805e-07 -0.00012708 1.8985e-06 -2.0062e-06 -1.7034e-06 -5.9662e-07 -4.1028e-07 Std.Error 0.0062657 0.20220 0.23500 0.20922 0.22547 0.33087 0.013290 0.38553 0.45364 0.48973 0.37880 0.63520

Take care interpreting SE for Quasi-Newton algorithms

Report of Iteration Done on Test

Obj= -534.361648798 Free Parameters index free stderr Y=2:age 6 -0.0117449879934 0.00626570540815 Y=2:male 7 0.561693428283 0.202195935676 Y=2:nonwhite 8 0.974776797699 0.235001739587 Y=2:isite2 9 0.113035852985 0.209222737479 Y=2:isite3 10 -0.587987950387 0.225471433292 Y=2:Cons 11 0.269712701856 0.330866619656 Y=3:age 12 -0.00779612195905 0.0132904774735 Y=3:male 13 0.451849385777 0.385526879953 Y=3:nonwhite 14 0.217059227487 0.453638241712 Y=3:isite2 15 -1.21156230532 0.489732709747 Y=3:isite3 16 -0.207812210676 0.378797153781 Y=3:Cons 17 -1.28694369346 0.635198399656 Actual Parameters Value Y=10 0.000000000000 Y=11 0.000000000000 Y=12 0.000000000000 Y=13 0.000000000000 Y=14 0.000000000000 Y=15 0.000000000000 Y=2:age -0.0117449879934 Y=2:male 0.561693428283 Y=2:nonwhite 0.974776797699 Y=2:isite2 0.113035852985 Y=2:isite3 -0.587987950387 Y=2:Cons 0.269712701856 Y=3:age -0.00779612195905 Y=3:male 0.451849385777 Y=3:nonwhite 0.217059227487 Y=3:isite2 -1.21156230532 Y=3:isite3 -0.207812210676 Y=3:Cons -1.28694369346 Y = 2 Estimate Std.Err t-ratio age -0.011745 0.0062657 -1.8745 male 0.56169 0.20220 2.7780 nonwhite 0.97478 0.23500 4.1480 isite2 0.11304 0.20922 0.54027 isite3 -0.58799 0.22547 -2.6078 Cons 0.26971 0.33087 0.81517 Y = 3 Estimate Std.Err t-ratio age -0.0077961 0.013290 -0.58659 male 0.45185 0.38553 1.1720 nonwhite 0.21706 0.45364 0.47849 isite2 -1.2116 0.48973 -2.4739 isite3 -0.20781 0.37880 -0.54861 Cons -1.2869 0.63520 -2.0260 ... finished.

 Global functions

Functions
 RunMLogitTest

 Global

 RunMLogitTest

RunMLogitTest ( )