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Abstract

This paper discusses how to design, solve and estimate dynamic programming models using the
open source package niqlow. Reasons are given for why such a package has not appeared earlier
and why the object-oriented approach followed by niqlow seems essential. An example is
followed that starts with basic coding then expands the model and applies different solution
methods to finally estimate parameters from data. The niqlow approach is used to organize the
empirical DP literature differently from traditional surveys which may make it more accessible to
new researchers. Features for efficiency and customization are also discussed.
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1. INTRODUCTION
Since the early 1980s fields such as macro, labor, and industrial organization have estimated discrete choice,
discrete time, dynamic programs.1 A barrier to empirical DP is the need to write computer code from scratch
without benefit of tools tailored to the task. When such computing tools emerge they ease verification,
replication and innovation in the area. For example, in applied econometrics, widespread adoption of Stata and
R has replaced low-level programming with high-level scripts that are portable and easy to adapt.

Why has empirical DP not benefited from development of a similar platform, even as applications and new
solutions methods continue to be published? The closest attempt is the Rust (2000) Gauss package available for
Rust (1987). There are good reasons to doubt a general platform for empirical DP is feasible. The models are
complex, the details vary greatly across fields, and their use involves multiple layers of computation (nested
algorithms). Perhaps all they have in common are tools provided by mathematical languages, such as matrix
algebra, simulation, and numerical optimization. Matlab packages such as Dynare and VFI Toolkit provide
additional tools without offering an integrated platform like Stata.2
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Does no empirical DP platform exist because it is impossible? If so, why have common platforms emerged
in the related areas of non-structural econometrics and dynamic macroeconomics? Or, is it possible, but for
some reason a common platform has not emerged from purpose-built code? This paper introduces the software
package niqlow to support the latter explanation. The package's design, and how it differs from purpose-built
code, suggests why no platform for empirical DP emerged for forty years.

niqlow replaces low-level purpose-built coding with high level tools to design, build and estimate
empirical DP models. To demonstrate this claim a simple model is defined and coded with essentially a one-to-
one correspondence between the mathematical elements and coding statements. The model is then extended and
estimated from data without rewriting code or programming any standard aspects of empirical DP directly.

Starting with Eckstein and Wolpin (1989) and continuing through at least Keane et al. (2011), reviews of
the empirical DP literature have attempted to standardize notation with no reference to computing. Because the
math does not map directly to code, these frameworks offer limited help to someone developing their own first
model. Using niqlow concepts as an intermediate translation between math and working code creates a new
way to describe and organize the DP literature. When compared to starting from scratch or "hacking" existing
code, new empirical DPs are easier to develop using standardized concepts.

Empirical DP articles contain a standard section that derives the econometric objective step by step. This
leaves the impression that the econometrics is specific to the model and the data, which is indeed the case when
using purpose-built code. But customized econometric objectives is not a deep feature of other models. For
example, a Stata user need not provide a function that returns the log-likelihood for their panel-probit data set.
Stata can compute it using details provided by the user. Automation of econometric objectives for empirical DP
also emerges in niqlow.

niqlow uses the object-oriented programming (OOP) paradigm to provide menus for state variables,
solution methods, and econometric calculations. This paper briefly explains OOP and why it seems fundamental
to creating a platform for empirical DP. It also proffers an answer to why such a platform emerged so late
compared to other areas of applied economics.

To promote collaborative development, niqlow is open source software housed on github.com under
a GPL License. Solution methods can now be compared on different models not simply those chosen by authors
proposing a new approach. New solution methods and replications can be added to the platform without
recoding.3 Ferrall (2021) replicates Rust (1987) in niqlow. Other complete and partial replications are
included in the examples section of niqlow. Barber and Ferrall (2021) estimates a lifecycle model of college
quality using niqlow.

1.1 A Tale of Two Papers
The toolboxes available for empirical work have diverged over time, and this can be traced starting from two
early "structural" estimation papers: MaCurdy (1981) and Wolpin (1984). Given resources available at the time,
both papers required extensive original programming and significant computational resources.
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MacCurdy (1981) estimates an approimxated lifecycle labor supply model on panel data. The Lagrange
multiplier on a lifecycle budget constraint in the MacCurdy model has a closed form in the estimated
specification. That form could have been imposed while estimating other parameters, but it would have to be
computed on each iteration of the econometric objective. Instead, MaCurdy (1981) approximates the multiplier
as a function of constant characteristics of the person. This approximate model is estimated using two-stage
least squares and instrumental variables. Fast-forward to today and MaCurdy's procedure has been reduced to a
single line of Stata code:

• xtivreg lnh `xvars' (lnw = exper exper2 L2.wage), first fd

That is, MacCurdy ran a panel IV regression on first difference of log hours using experience and lagged wages
as instruments for current wages. (The list of exogenous variables `xvars' is defined elsewhere.)

Wolpin (1984), estimates a lifecyle model of fertility on panel data using maximum likelihood. It defines
the approach as a nested solution algorithm that imposes all restrictions of the model on the estimated
parameters.4 Many if not most empirical DP papers follow the same basic strategy. Despite this, nearly all
empirical DP models continue to require purpose-built programs for the model. Any change requires re-coding,
and certainly no single line in a Stata script solves and estimates a DP model.

Since Wolpin's purpose-built code there has been essentially zero infrastructure developed for empirical
DP models. Something has blocked progress in the empirical DP toolbox that did not block IV panel regression
code from evolving into single commands in popular packages. Two claims are made here about this roadblock
in code development. First, object-oriented programming (OOP) appears essential for removing barriers to a
more general economics toolkit. Without shifting to OOP code there was no way to avoid custom coding
empirical DP. Second, Section (6.5) provides an explanation why empirical DP did not shift to OOP until
niqlow.

1.2 OOP versus PP
Since this paper argues computer programming paradigms have affected the development of economic research,
the two relevant paradigms are briefly described here. Readers familiar with OOP can skip this section.5

Consider the task of creating a computing platform to be used by others to solve their own problems. Call
the original coder the programmer and the one using the platform the user. OOP can be compared to the more
straightforward procedural programming (PP) approach that has produced most published empirical DP results,
in which the programmer and user are essentially the same person or team. Appendix A illustrates the difference
between the approaches with the example of coding a package for consumer theory.

A key difference between PP and OOP is how data are stored and processed. In procedural programming
(PP) data stored in vectors or other structures are passed to procedures (aka functions or subroutines) to do the
work.6 The procedure sends the results back to the program through a return value or arguments of the
procedure. The programmer of a platform would write functions that the user would call in their own program
sending their data to the built-in functions.

OOP directly connects (binds) data and the procedures to process them. It does this by putting them
together in a class. This brings new syntax and jargon. A class is a template from which objects are created
during execution of the program. A class and objects created from it have variables (members) and functions
(methods) that process the data stored in the class members.

3



OOP has three key features that are difficult to code using PP alone. First, a class can be derived from a
base class while adding or modifying components. In other words, a class can inherit features from a parent
class. The programmer may define child classes from a derived parent to handle different situations the user may
confront. Each child in turn might have derived grandchildren. The user can also create their own derived class
that inherit only the features of the ancestor classes. Inheritance is a downstream connection between classes
created by the programmer for the user.

Second, all objects of the same class can share member data and methods while having their own copies of
other members as designed by the programmer. Shared members are sometimes called static because additional
storage for them is not created dynamically as objects are created during execution. Static members is a
horizontal connection between objects while a program executes.

Third, there is an upstream connection between classes. In OOP jargon this is called a virtual method.
Suppose the parent class marks profit() a virtual method. As with all ancestor features, a child class can
access profit(). However, the child can define its own method profit(). Since the parent class labels the
method virtual it allows the child version to replace the parent version when used by other parent code. That is,
the programmer has given the user the option (or the requirement) to inject their own code into the base code. If
profit() is not virtual then the user can still create their own version but it will not replace the parent version
inside the parent code.

These downstream, horizontal, and upstream connections between data and the functions that process them
can be implemented without using objects in procedural programming. No PP platform for empirical DP has
been attempted, and no supplemental code has freed users from writing basic functions themselves. This
suggests the complex environment of empirical DP requires OOP.

2. EMPIRICAL DYNAMIC PROGRAMMING
This section defines key elements of dynamic programming that appear in empirical applications. A simple
example is implemented in the niqlow framework before extending it to account for multiple problems and
parameter estimation.

2.1 A DP Problem

2.1.1 The Primitives
The symbols that define a single generic DP model, in order they are explained in this section, are:

The first element is the state , a vector of state variables:  A state is an element of the
state space  Second, at each state an action  is chosen, a vector of action variables: 
The action is chosen from the feasible choice set 7 Third, the next state encountered in the program,
denoted , follows a semi-Markov transition that depends on the current state and action, 

θ ∈ Θ α ∈ A(θ) P(θ ′;α, θ) U (α, θ) δ ζ ψ. (1)

θ θ = ( s0 … sN ) .

Θ. α α = ( a0 … aM ) .

A(θ).

θ ′ P (θ ′;α, θ) .
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When making decisions at , the agent's objective involves the one-period payoff or utility  In
niqlow it is treated as a vector-valued function of the feasible action set, so it will be written  The
objective is additive in values of possible states next period discounted by  The values of actions include a
shock  contained in the vector  These shocks often appear in empirical DP to smooth the solution.8

Finally, parameters that determine the other primitives are collected in the structural parameter vector 
Except for  and  the other primitives listed above are all possibly implicit functions of  When the
empirical DP includes agents solving different problems, exogenous (demographic) data define different
problems and they also interact with  The roles of parameters and data are made explicit later.

2.1.2 Bellman's Equation
The value of an action takes the form9

The final term in the action value  is the endogenous expected value of future decisions. Optimal state-
contingent choices and their value are defined as

Value at  integrates over optimal value conditional on  For a model with no  the integral collapses to 

The expected value next period sums over the transition of discrete states:

Two assumptions about  are built into this expression. First, future shocks are built into  which is not
affected directly by the current shock because  is IID over time. Second,  can influence the transitions of other
state variables only through its effect on  These conditions form Rust's (1987) conditional independence (CI)
property.

Bellman's equation, also known as the Emax operator, imposes the conditions  at all states
simultaneously:

2.1.3 Conditional Choice Probabilities: Three Flavors
The agent conditions choice on all available information, and  in  is the set of feasible actions that
maximize value at a state. This leads to the first notion of choice probability: from the agent's perspective. In
particular, non-optimal choices have 0 probability of occurring. If the optimal choice is unique then the agent
chooses it with probability 1. The first flavor of choice probability assigns equal probability to all optimal
actions:

θ U (α, θ) .

U (A(θ), θ) .

δ.

ζα ζ.

ψ.

Θ A(θ), ψ.

ψ.

vζ (α, θ) = U (α, θ) + ζα + δE α,θ V (θ ′) . (2)

(2)

α⋆
ζ
(θ) = arg max vζ (α, θ)

Vζ (θ) = max α∈A(θ)  vζ (α, θ)

V (θ) = ∫
ζ

 Vζ (θ) f(ζ)dζ.

(3)

θ ζ. ζ

V () ≡ Vζ().

E α,θ V (θ ′) = ∑
θ ′∈Θ

 V (θ ′)P (θ ′;α, θ) . (4)

ζ V (θ ′)

ζ ζ

α.

(3)

∀ θ ∈ Θ, V (θ) = ∫
ζ

 [max α∈A(θ)  U (α, θ) + ζα + δE α,θ V (θ ′)]  f (ζ) dζ. (5)

α⋆ (3)

{ }
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where  is the indicator function and  is the cardinality of a set 
The choice probability in  is not continuous in the parameter vector  because it includes an indicator

function. For example, suppose a small change in a parameter induces a small change in utility. This can shift an
action  from optimal to not optimal and vice versa.  jumps in value which in turn makes an
econometric objective built on it discontinuous.

This issue is fixed by treating  as private to the agent. Now choice probabilities based on public
information are continuous because they integrate over , leading to the second notion of choice probability:

For example, when  is extreme value we get the familiar McFadden/Rust form of CCP:

The choice probability in  is relevant to the empirical researcher but not to the agent who conditions choice
on .

If  is excluded from the model, CCPs may still need to be continuous in the parameter vector . This leads
to the third notion of conditional choice probability: ex post smoothing using a kernel  over all feasible
action vectors:

CCP3 adds trembles to CCP1. Equations  and  differ because, in the former, the shocks enter the value
function and affect the expected value of future states. In the later, the smoothing takes place separately from the
value function. So a logistic kernel is the same functional form as the McFadden/Rust CCP in , but the
values of the actions are not the same.

The three CCP flavors, un-smoothed as in , ex-ante smoothed as in , and ex-post smoothed in ,
are all part of niqlow. Within the smoothed classes, the functional or distributional form is a further part of the
specification. niqlow provides options for standard functional forms and gives the user the possibility of
adding alternatives.

Once solved, the DP model generates an endogenous state-to-state transition:

This transition sums over all feasible actions. Computing  is unnecessary in ordinary Bellman iteration,
because an agent following the DP will make a choice at each  they reach.  does play a role in predictions
and some solution methods discussed later in Section (5.4).

CCP1: P ⋆
ζ

(α; θ) = , (6)
I {α ∈ α⋆

ζ
(θ)}

#α⋆
ζ
(θ)

I{ } #B B.

(6) ψ

α P ⋆
ζ

(α; θ)

ζ

ζ

CCP2: P ⋆ (α; θ) = ∫
ζ

 P ⋆
ζ

(α; θ) f(ζ)dζ. (7)

ζ

P ⋆ (α; θ) = . (8)
ev(α,θ)

∑a∈A(θ)e
v(a;θ)

(7)

ζ

ζ ψ

K[ ]

CCP3: P ⋆
K

(α; θ) = K [ v (A (θ) ; θ)  ] . (9)

(7) (9)

(8)

(6) (7) (9)

P (θ ′; θ) = ∑
α∈A(θ)

P ⋆ (α; θ)P (θ ′;α, θ) . (10)

(10)

θ (10)

6



A final component of a single agent empirical DP model is the set of initial conditions from which data are
generated. In non-stationary models it is an exogenous distribution of initial states,  If the environment is
stationary then there may be a stationary or ergodic distribution over states, denoted  that satisfies

It is often assumed that data are drawn from the ergodic distribution as the initial condition for estimation
or prediction in stationary environments.

2.2 Building a DP in niqlow
Empirical DPs have typically been solved using purpose-built programs with hard-coded loops to span the state
space  of the model. Different tasks (model solution, prediction or simulation, etc.) use a different nest of
loops that must be kept synchronized with the model's assumptions. Introducing another action or state variable
requires re-coding and re-synching at the lowest level of the code.

A platform to build and solve any DP model cannot start with this code structure. In particular the hard-
coding of the platform by the programmer cannot be model-specific. Instead, the work to build the state space,
solve the model, and use it must be constructed from the user's code. The platform must offer standard choices
and "plug-and-play" tools for building the model. Algorithm 1 summarizes how a user would use niqlow
following this approach.

Algorithm 1. User Coding Steps in niqlow

A. Declare a new class (template) for the model

B. Create the DP

1. Initialize: call Initialize()

2. Build: add variables and other features to the model

3. Create Spaces: call CreateSpaces()

C. Code  and other functions specific to the model.

D. Solve: Apply a solution method to compute  and 

E. Use: Simulate data, predict outcomes, estimate parameters, etc.

These steps solve a single agent DP once and use it somehow. Empirical DP almost always requires
solving multiple problems multiple times using a nested solution method. In this case the Use and Solve steps
above are intertwined (nested). How niqlow handles this is discussed in Section (6).

f0(θ).

f∞(θ)

P (θ ′; θ) f∞(θ) = f∞(θ). (11)

Θ

U()

V (θ) P ⋆ (α; θ)
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None of the steps in Algorithm 1 include low-level tasks such as: "Code loops to iterate on the value
function and check for convergence." These tasks are done for the user based on the high-level elements their
code provides. The top-level elements may appear in the code in a different order, but the numbered steps in part
B must be executed in that order. Steps B.1 and B.3 each correspond to named functions in niqlow. The
amount of coding that other elements in Algorithm 1 involve depends on the model and its purpose.

2.3 Example: Lifecycle Labor Supply
Consider a simple discrete choice lifecycle labor supply model which will be used throughout the rest of the
paper to illustrate how niqlow provides a platform for empirical DP. The agent lives 40 periods with the
objective of maximizing discounted expected value of working ( ) or not ( ) each period. Earnings 

 come from a Mincer equation that is quadratic in actual experience  Earnings are subject to a discrete
IID shock . Six equations describe the model:

The earnings shock follows a discretized standard normal distribution taking on  different values, hence the
notation  The parameter  is the utility of not working. The coefficients in the earnings equation are
elements of the vector  that includes the standard deviation of the earnings shocks, . An alternative would
keep the earnings shock continuous and solve for a reservation value for  This framework and the code
to convert the discrete model to the continuous version is described in Appendix C.

The vector  in the earnings function is constructed at each state based on the current values of the state
variables. As a bridge to coding , first translate the model into terms used in niqlow.

The Labor Supply Model Using niqlow Concepts

Element Value Category Params / Notes
Clock Ordinary Aging T=40.

CCP ExtremeValue .

Actions Binary Choice

States: Action Counter
Zvariable

N=40
N=15;  defined in Section (3.6.2).

Choice Set for all 

Utility
 defined in .

m = 1 m = 0

(E) M.

e

Objective: E∑39

t=0
0.95t [U (mt; et,Mt) + ζm]

V shocks: F(ζm) = ee
−ζm

Experience: Mt = ∑t−1

s=0
ms;  M0 = 0

E Shocks: et 
iid∼ dZ(15)

Earnings: E(M, e) = exp{β0 + β1M + β2M
2 + β3e} = exp{xβ}

Utility: U(m; e,M) = mE(M, e) + (1 − m)π.

(12)

15

dZ(15). π

β β3

m = 1.

x

(12)

t

ζ ρ = 1

α = (m)

θ

ϵ

=

=

(M)

(e) ϵ

A(θ) = {0, 1} θ

U ( ) = ( π

E(θ)
)

E(θ) (12)
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[A]

[B]

This intermediate translation of the math is a new way to summarize the DP literature and a strategy to reduce
the fixed cost of building new models. Using these essential elements code can be written corresponding to each
step in Algorithm 1.

A. Declare the template for 
With line numbers added and Ox keywords in bold the code is:

    classclass LS : ExtremeValue {
1.      staticstatic decldecl m, M, e, beta, pi;
2.             Utility();
3.      staticstatic Build();
4.      staticstatic Create();
5.      staticstatic Earn();
    }

The class is named LS and is derived from the built-in class for extreme value shocks (ExtremeValue).10 The
declaration is not executed. Instead, it is the template for creating each point in the state space while the
program executes (step B.2 of the algorithm). Most variables and methods needed by LS are already defined by
its ancestor classes. Only details that niqlow cannot know ahead of time need to be added to LS. Line 1 of [A]
declares a member for each element of the model, except  and  which are inherent elements of any problem.
All the new members are "static" as briefly explained in Section (2) as a horizontal connection between objects.
An object of the LS class is created for each point in the state space  but there is only one copy of the static
members shared by each object.11

Create, Solve and Use
Like C, an Ox program always contains a procedure named main() which is where execution begins. LS is
designed so that the main procedure is short:

#include "LS.ox"
     main() {
1.        LS::Create();
2.        VISolve();
3.        ComputePredictions();
         }

These three lines of code correspond to steps B-D in Algorithm 1. The sub-steps of B are combined into the
Create() method. A user could put all the code inside main() rather than isolating some of it in
Create(). Line 2 solves the value function and computes choice probabilities (step C). Solution methods are
described in Section (4). Line 3 generates average values of all the variables based on the solution, as an
example of using the solved model (Algorithm 1.D).

B. Create the Model
The three sub-steps in part B are put together in Create():

θ

t δ,

Θ,
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[C]

[D]

    LS::Create() {
1.       Initialize(1.0,new LS());
2.       Build();
3.       CreateSpaces ();
         }

Any DP model must include lines 1 and 3 of [C]. Items like state variables and actions must be added to the
model in between those two statements. Build() contains the code specific to the labor supply model. As with
main(), Create() could contain more lines of code rather than placing them in Build(). The reason for
this becomes apparent when the simple model is extended later on. The version of Initialize() and
CreateSpaces() invoked by this code depends on which class LS was derived from.

B.2 Build the Model

In niqlow the action and state vectors are not hard-coded. They are built dynamically as the program executes
by adding objects to a list. These tasks must happen in the Build sub-step (Algorithm 1.B2) which here is coded
as a separate method:

    LS::Build() {
 1.      SetClock(NormalAging,40);
 2.      m = new BinaryChoice ("m");
 3.      M = new ActionCounter ("M",40,m);
 4.      e = new Zvariable ("e",15);
 5.      Actions (m);
 6.      EndogenousStates (M);
 7.      ExogenousStates (e);
 8.      SetDelta (0.95);
 9.      beta = <1.2 ; 0.09 ; -0.1 ; 0.2>;
10.      pi = 2.0;
        }

Line  [D.1] uses SetClock() to specify the model's clock using one of niqlow's built-in clocks,
NormalAging. The parameter for normal aging is the horizon  here 40 years. If the user wanted to solve an
infinite horizon model the code would change the argument to InfiniteHorizon. These choices dictate
how storage is created and how Bellman's equation is solved, but from the user's perspective it is simply a
different choice of clock.

Line [D.2] creates a binary action and stores it in m (declared a member of the LS class in [A]) . Line 5
sends m to Actions() which adds it to the model. The two state variables are created on lines 3 and 4.
ActionCounter is a built-in class derived from the base StateVariable class. 12  needs to know
which action variable it is tracking, so  is sent when the counter is created on line 3 along with the number of
different values to track (from 0 to 39).

Line 4 creates the earnings shock as object of the Zvariable class. Creating a state variable object does
not automatically add it to the model. Lines 6 and 7 do this. Since  is IID it can be placed in the  vector by
sending it to ExgoenousStates(), explained below. However,  is endogenous because its transition
depends on its current value and the action  It must be placed in  by sending it to EndogenousStates().

T ,

M

m

e ϵ

M

m. θ
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The last three lines of Build() set the value of model parameters. There is no need to formally define the
structural parameter vector because this version of the model is not estimated. The discount factor  is set by
calling SetDelta() and is stored internally.

B.3 Creating Spaces
Line 3 [C.3] sets up the model by creating the state space, the action spaces and other supporting structures.
Selected output from the niqlow function is given in Figure 1. The summary echoes the model's class and its
ancestors back to the Bellman class. It echoes the clock type and then list state variables and the number of
values they take on. Note that  was added to  by SetClock(), and it is the second right-most variable in 
Several state variables are listed that take on 1 value and were not added to the model by the user code. These
are placeholder variables for empty vectors explained below. Next, the report lists the size of the state space 
and some other spaces. The difference values are discussed later.

Figure 1. Report for the Labor Supply Model CreateSpaces()

0. USER BELLMAN CLASS:    LS | Exteme Value  | Bellman
1. CLOCK:                 3. Normal Finite Horizon Aging
2. STATE VARIABLES
              |eps   |eta |theta -clock        |gamma
                e    s21      M      t     t''     r      f
       s.N     15      1     40     40      1      1      1
3. SIZE OF SPACES
                       Number of Points
    Exogenous(Epsilon)               15
    Endogenous(Theta)                40
    Times                            40
    EV()Iterating                    40
    ChoiceProb.track               1600
    Total Untrimmed               24000
5. TRIMMING AND SUBSAMPLING OF THE ENDOGENOUS STATE SPACE
                           N
    TotalReachable       820
         Terminal          0
     Approximated          0

C. Code Utility and Other Functions
Algorithm 1.C says to code utility and other functions. Utility is not involved in creating the state space so is
only called once a solution method begins. The user's utility replaces a virtual utility called inside niqlow
algorithms. There are several other virtual methods that the user might need to replace, and some examples
appear below.

To match the model specification in , and in anticipation of empirical applications, earnings and utility
are coded as separate functions:

ψ δ

t θ θ.

Θ

(12)
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[E]    LS::Earn() {
       decl x;
1.     x = 1 ~ CVCV(M) ~ sqr(CVCV(M)) ~ AVAV(e);
2.     return exp( x*CVCV(beta) ) ;
       }
    LS::Utility() {
3.     return  CVCV(m)*(Earn()-pi) + pi;
       }

Earnings has been written in matrix form as  on line 2. The expression for x on line 1 uses Ox-
specific syntax to construct the vector. The presence of CV() and AV() in these expressions is specific to
niqlow. For example, the vector beta, created on line 9 can be used directly in Ox's matrix-oriented syntax.
However, line 2 of [E] sends it to CV(). The reason for doing so is given when discussing estimation of
parameters in Section (5.4.) The role CV() and AV() play in niqlow is explained in Appendix B.

D-E. Solve and Use the Solution
Line 2 of main() in [B] calls a function that will solve the DP model. Solution methods are discussed Section
(4). ComputePredictions() is also part of niqlow and is called in the main program on line 3. It uses
the solved model and integrates over the random elements and optimal choice probabilities to produced
predicted outcomes at each  How predictions are computed and used to estimate in GMM estimation is
discussed in Section (5.4).

The output of the prediction listed in A1 shows the agent works with probability 0.3982 in the first period.
This integrates over the discrete distribution of earnings shocks and the continuous extreme-value choice
smoothing shocks as well as optimal decisions. In the last period of life a large sample of (homogeneous) people
would work 13% of the time and will have accumulated 7.52 years of experience on average.

The definition of the labor supply model corresponds roughly 1-to-1 with user code in niqlow. There has
been no previous attempt to embed empirical discrete dynamic programming in a higher-level coding
environment for even a simple class of models. It is true that one-time code for what has been shown so far is
not complicated. Extensions of the model are shown which can be implemented with one or two lines in
niqlow that would otherwise involve rewriting of the one-time code. Before discussing them, consider a side
benefit of using a platform rather than purpose-built code: efficiency.

2.4 Efficient Computing
Discrete state dynamic programming suffers from the curse of dimensionality: the amount of work to solve a
program depends on the size of the state space  which grows exponentially in the dimensions of the state
vector  How big  can be before it is too big depends on many factors, including processor speed, solution
methods and code efficiency.

E = exp{xβ}

t.

Θ

θ. Θ
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The labor supply model is a small problem, and a novice coder can implement it with straightforward code.
However, efficient code is not necessarily simple or intuitive to write. As a novice builds on the small problem
inefficiencies in their code can invoke the curse of dimensionality before necessary. When this happens they
need to discover the inefficiencies and rewrite their code. These inflections points, where a novice's progress
slows down while rewriting code, may determine when a project stops. That is, the point can be reached where
the marginal cost of finding and eliminating inefficiencies exceeds the marginal value of additional complexity.

This section discusses three ways efficiency is automatically accounted for in niqlow. Many other
strategies to increase efficiency, and to balance storage and processing requirements are encoded in niqlow.
Models developed with niqlow do not avoid the curse of dimensionality, but they can delay it.

2.4.1 Time (and Memory) is of the Essence
An important distinction among dynamic programming models is whether the model's horizon, denoted , is
finite or infinite. More precisely, the issue is whether any regions of the state space are ergodic. If  is ergodic, 
simply separates today from tomorrow and the value of all states can affect the value at any current state.
Bellman's equation then implies a fixed point in the value function. If, at the other extreme, the agent is subject
to aging and  then only future states affect the value of states at  Bellman's equation can then be
solved backwards starting at 

A solution method could always assume that the DP problem is ergodic. The reason for not doing this is
practical: past states would enter calculations unnecessarily. A practical DP platform exploits the reduced
storage and computation implied by a non-stationary clock. It also must exploit methods to find fixed points
quickly in stationary models.

As seen in the labor supply code (Line [D.1]), the clock is set by SetClock(). The clock controls how
Bellman's iteration proceeds. If  is a stationary phase (so it is possible that ) then a fixed point condition
must be checked before allowing time to move back to  If, on the other hand,  is a non-stationary phase
then no fixed point criterion must be satisfied.

Further, empirical dynamic programming involves multiple stages which process (span) the state space, not
just Bellman iteration. For example, once the value function has been computed the model can be used for
simulation, prediction or estimation. These processes involve all values of time whereas Bellman's iteration only
involves "today" and possible states "tomorrow". This creates another complication. While iterating on
Bellman's equation the transition  should map into only the possible next time periods. But when
simulating outcomes the transitions must relate to model time.13

niqlow addresses all these issues for the user without re-coding. It accounts for differences in how
backward iteration proceeds and what future values are required to compute current values. It also uses different
linear mappings from state values into points of the state space depending on whether it is accessing the value
function or tracking model time.

2.4.2 Not all State Variables are Equally Endogenous
A state variable has a transition that determines its value in the next period depending on the current state of the
program and the action chosen. Empirical DP models contain some state variables that follow specialized
transitions, such as the earnings shock  in the labor supply model. The agent conditions their choice on the
realized value of  but  has no direct impact on future states, including its own value which is IID. This means
less information needs to be stored about  than, say,  niqlow handles this by letting the user place state
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variables in different vectors.
Recall that  is the primitive transition function. In niqlow the full transition is built up from

the transitions of the state variables added to the model. If, after conditioning on  and  a state variable 
evolves independently of all other variables its transition can be written  In niqlow  is said to be
autonomous. When all state variables are autonomous the transition is the product of the individual transitions:

In this baseline form each current state has a transition matrix associated with it: rows correspond to
actions and columns to next states. The elements are the transition probabilities.

The baseline form may be either too simple or too complex than needed. On the one hand, state variables
may not be autonomous. Two (or more) state variables are not autonomous if, after conditioning on the full state
 and action , their innovations are still correlated with each other. In niqlow they must be placed inside a
StateBlock which is then autonomous.

On the other, many state variables have simpler transitions that require less storage and recomputing than
the baseline. The labor supply shock  is IID. Its values next period is independent of everything including its
own current value. There is no need to account for its distribution separately at each  combination. If  can
be handled separately this removes 15 columns from the baseline transition matrix at each point .

The transition for experience  does depend on both its current value and the action. Its transition cannot
be factored out across states, but it depends on the current value of  only through . If  is isolated from  then
fewer state-specific matrices are required to represent the transition  in . This is why  was added to the
"exogenous" vector in [D.7]. This vector is denoted  in the model summary to distinguish it from .

Figure 2 illustrates the full set of options for classifying state variables in order to economize on storage
and calculations. It begins at the top where all state variables start out as generic except any co-evolving
variables have been placed in a block represented by a single . Each is filtered (by the user) into one of five
vectors based on its transition. The two leftmost vectors,  and , contain variables whose transitions can be
written  because they are IID. The two rightmost vectors,  and , contain variables that are fixed for the
agent because they do not transit at all:  These vectors represent different DP problems not evolving
states for a given problem. Examples are discussed later.
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Figure 2. Sorting State Variables into Separate Vectors

The middle category in Figure 2 is the endogenous vector  It contains state variables that are neither transitory
nor permanent. Transitions for variables in  take the form  That is, the transition can depend
on the action and all other state variables except those in  If all state variables are placed in  then the result is
the baseline transition . Naive code treats all state variables generically and computes the baseline transition
at the cost of wasted computation or storage.

By definition, a variable placed in  cannot directly affect other transitions. If an IID state variable directly
affects the transitions of other state variables it can only be placed in  That is,  and  vectors satisfy
conditional independence but  and  do not. An example is explained in Appendix B.

2.4.3 Extended Notation for DP Models
The basic notation of a DP model involving , , and  appearing in -  must be extended to account for the
option to sort state variables into the five vectors:

θ.

θ f(q;α, η, θ, γr, γf).

ϵ. θ

(13)

ϵ

η. ϵ ζ

η θ

α ζ θ (2) (5)

Basic ⇒ Extended

U (α; θ) ⇒ U (α; ϵ, η, θ, γ)

vζ (α, θ) ⇒ vζ (α; ϵ, η, θ, γ)

P (θ ′;α, θ) ⇒ P (θ ′;α, η, θ, γ)

E α,θ V (θ ′) ⇒ E α,θ,η,γ V (θ ′, γ)

(14)
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That is,  potentially depends on everything except  which only affects  The primitive transition
depends on everything except  and  so the same is true of the expectations operator over future states. The
new categories of state variables allow niqlow to economize on storage and computing in large-scale DP
projects. By the same token, these extra vectors can be ignored when solving a small DP.

At each point  the transition  must be stored. How big each of these matrices are depends on
the transitions. niqlow updates these matrices before starting to solve the DP model so that the transitions can
depend on parameters that are set outside the model.

The minimum additional required information that has to be stored at  is a matrix of dimension 
, where  means the number of distinct values of the semi-exogenous vector. This space holds

the value of actions  The exogenous vector  is summed out at each value of  which uses temporary
storage for utility 14 Once  is finalized, the matrix storing  can be rewritten with the conditional
choice probability matrix  which has the same dimensions. This re-use of the same matrix cuts
storage in half.

The group vector  accounts for multiple problems within the same model. This requires looping over the
state space  for each separate problem. In naive code additional groups might expand the state space.
However, niqlow re-uses  for each value of  which can drastically cut storage compared to code that stores
all DP problems simultaneously. In niqlow almost no other information about the DP problem is duplicated at
each point .

2.4.4 Not All States Are Reachable
In the labor supply model the agent begins with 0 years of experience. States at  with positive values of 
are irrelevant to any application of the problem to data. There is no need to solve for  at these states,
although doing so causes no harm. A t  the only reachable states are  and  The other 38
values of  are irrelevant to the problem in the second period. The terms reachable and unreachable are used
for this distinction instead of feasible and infeasible. Whether a variable's value is reachable depends on the type
of clock and the initial conditions not just the set of feasible actions  If the clock were stationary, or if
initial conditions allowed for other initial values of  then these states would become reachable.

Dedicated code for spanning the state space for the labor would account for unreachable states by changing
the main loop, similar to this pseudo-code:

for ( t=39; t>=0; --t ) {
    for (M=0; M<=tt; ++M) {
         ⁞
        }
    }

Note the limits on the inner loop is t not 39. This is an example of hard-coded procedural programming for a
particular kind of state variable appearing in a specific model. To enforce reachability as the model is changed
requires inserting, deleting or modifying these loops. Since naive code has multiple nested loops to handle
different tasks the chance of mistakes or inefficiencies is always present.
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niqlow accounts for unreachable states for many state variable classes when CreateSpaces() is
called to build  For example, if the model has a finite horizon clock and includes an action counter like ,
then only points that satisfy  are created. The user can override this if, for example,  is not the
initial condition. This one-time cost of deciding which states are reachable reduces storage requirements and
lowers the ongoing cost of each state space iteration that may occur thousands of times during estimation.15

2.4.5 Adding up Inefficiencies in Naive Code
Three possible code inefficiencies have been explained: generic transitions, duplicate storage of action value
and choice probability, and unreachable states. The output in Figure 1 computes the savings and reports their
sizes for the labor supply model.

First, a naive state space  would include  states. However, niqlow would
average over the 15 values of the IID earnings shocks and store only a single value at each  Next, niqlow
reduces  to  states through trimming of unreachable states. And it would only store the value
function for  points while iterating (one vector for  and one for ). A naive solution might store

 numbers for action values and choice probabilities (whether reachable or not). Meanwhile, niqlow
would store  values, overwriting  with 

The baseline transition  would (naively) require  matrices, either to be stored or
computed dynamically. Each matrix would be of dimension  With sorting into different state
vectors only 820 matrices are required. The transition for  is a single  vector which is combined with the
state-specific matrix when needed. Further, niqlow determines that only 2 states at most are feasible next
period, so a  matrix is stored.16

2.5 Extensions
Consider the labor supply model as an initial attempt that the user wants to build on. They can add/modify
elements of LS, or they can create a new class derived from LS and keep the base untouched. Extensions are
discussed here showing the changes needed to effect them. The new derived class will be called LSext in each
case. Appendix B also discusses how to restrict actions depending on the state and ways to specialize simply
transitions without the need to create new state variable classes.

2.5.1 Adding or Modifying State Variables

First, suppose the earnings shocks should change from IID to correlated over time:

If the model were hard-coded in loops, this change would require a major rewrite. In niqlow it requires
two simple changes to Build(). First, replace Zvariable() on line 4 with

4*.   e = new Tauchen("e",15,3.0,<0.0;1.0;0.8>);

Now  contains an object that implements Tauchen's approach to discretizing a correlated continuous shock. As
before, 15 discrete values will be used. The remaining arguments set the options of the discretization, including
a correlation of  that appears in a vector of normal parameters. Second, since  is no longer IID it is

Θ. M

M ≤ t M = 0

Θ 40 × 40 × 15 = 24, 000

θ.

Θ 40 ∗ 41/2 = 820

2 × 40 = 80 t + 1 t

96, 000

820 × 15 × 2 = 24, 600 v (α, θ) P ⋆ (α; θ) .

(13) 820 × 15 = 12, 300

2 × (15 × 40).
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[F]

placed in  along with  (as on line [D.6]). Those two changes complete the modifications.

2.5.2 Adding Variables That Create New Problems
Most DP applications involve heterogeneous agents solving related but different dynamic programs. In niqlow
different DPs create different points in the "group space" denoted  A single DP problem is a point  in this
space. This was illustrated in Figure 2 which showed  to the right of  There are two types of permanent
heterogeneity, corresponding roughly to fixed and random effects in econometrics models. Fixed effect
variables are observed permanent differences in exogenous variables placed in the  sub-vector. Random effect
variables are unobserved permanent differences placed in . Memory is economized by reusing the state space
for each group. That is,  is shared for all values of  17

In a second extension of the labor supply model the user accounts for differences across observed
demographic groups and 5 levels of unobserved skill. One way to express this is to write the intercept term for
earnings as a function of the agent's fixed characteristics:

Now there are 30 dynamic programming problems, one for each combination of fixed factors that shift the
intercept in earnings. Three more lines of code in the build segment expands the model for this change:

    LSext::Build() {
1.      Initialize(1.0,new LSext());
2.      LS::Build();
        ⁞
3.      x = new Regressors({"female","race"},<2,3>);
4.      k = new NormalRandomEffect ("skill", 5);
5.      GroupVariables(skill,x);
        ⁞
        CreateSpaces();
    }

The template for LSext (not shown) would add static members for the new variables x and k. Since LSext is
derived from LS their common elements are already available. However, Initialize() on Line 1 must
receive a copy of LSext to clone over the state space. It cannot be sent a copy of the base LS class as was done
in the base model. CreateSpaces() can only be called once, and the new group variables must be added to
the model before it is called.

This is why LS::Build() did not include calls to Initialize() and CreateSpaces(). They
were placed in [C]. Now on line 2 it can be reused in [D] to set up the shared elements.

The Regressors class on line 3 holds a list of objects that act like a vector and can be used in
regression-like equations such as earnings. The columns can be given labels and the number of distinct values
are provided (in this case 2 and 3, respectively). T h e NormalRandomEffect on line 4 is like
Zvariable() except it is a permanent value rather than an IID shock. To finish this extension another vector
would be created for  and Earn() would be modified accordingly. The user might also modify utility to
account for preference differences across groups as well.
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3. SOLUTION METHODS
In niqlow a DP solution method is coded as a class from which objects can be created then applied to the
problem. The base Method class iterates over (or spans) the group space  and the state space  by nested
calls to objects to iterate over parts of the spaces down to iteration over the exogenous state vectors at each
endogenous state  These procedures are equivalent to the usual nested loops in purpose-built DP code.

3.1 Bellman Iteration
One way to categorize DP solution methods is between brute force and clever methods. Brute force methods,
such as the one pioneered in Wolpin (1984), iterate on Bellman's equation  to solve the model while
estimating parameters in . Bellman iteration is implemented by the ValueIteration class derived from
Method. The function VISolve() used in [B] is a short cut that creates an object of the ValueIteration
class, calls its solution function and prints out the results.

Bellman iteration itself depends on details of the model, most notably the model's clock. Algorithm 2
describes the algorithm and how allows properties of the clock to determine the calculations.

The form of the Emax operator itself also depends on the smoothing method, related to the presence of  in
choice values. If no smoothing terms are present, Emax is simply the maximum of  over  In
general, the solution method relies on code related to the base class the DP model to handle it.18

Algorithm 2. Backward Bellman Iteration

Let  denote the subset of states with the clock set to  Let SetP be a binary flag. Let  and  be two vectors of

equal size that depends on the maximum size of  and how many different values  can take on for the clock.

A. Initialization

1. Set t = T-1.

2. Set 

3. Span the state space to compute and store  at each 

4. Set SetP= TRUE if  is a non-stationary phase.

Notes. If the clock is stationary  starts at 0. Final values from a previous solution can be stored

in  instead of re-initialized.
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B. Iteration

1. If  STOP. (Convergence has occurred and choice probabilities have been computed over )

2. Visit each point in 

a. Compute  and  for each action and each IID vector 

b. Compute  (or Emax) defined in , averaging over  Set  for each 

c. If SetP=TRUE, replace the matrix holding  with the choice probability  in equation .

3. Check convergence using the Clock's VUpdate().

4. Swap  and . Return to step 1.

C. Update (clock specific).

If SetP=TRUE

Set . (Convergence was achieved on the last iteration)

Otherwise

Compute 

If  then SetP=TRUE.

In purpose-built code, the simplest approach to working backwards in  and spanning  involves nested loops
over all state variables. In a language such as FORTRAN the depth of the nest would depend on the number of
state variables in  Adding or dropping states requires inserting or deleting a loop.19

A novice researcher may start with nested loops then realize there is an alternative. The discrete state space
is converted to a large one-dimensional space with a mapping from the index back to the values of the state
variables. This transformation is not trivial to modify as state variables are added or dropped from the model or
when switching to algorithms that require different types of passes (such as the Keane-Wolpin approximation
discussed below).

niqlow relies on a fixed depth of nesting independent of the length of vectors. The difference in the
update stage is handled by a method of the clock. One segment of code works for all types of clock. Further, the
same code handles tasks other than Bellman iteration. Each task, such as computing predictions, is a derived
class with its own function that carries out the inner work at each state. New methods can be implemented
without duplicating loops in different parts of the code. This approach has a fixed cost to create the state space
each time the program begins. Hard coding loops over a pre-defined state space has not fixed cost at execution
time but a larger cost of time spent re-coding as the model changes.

3.2 Variations on Value Iteration
Several alternatives to Bellman iteration algorithm are currently implemented in niqlow. This section briefly
discusses some key ones. The algorithms appear in Appendix C.
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Most methods attempt to reduce calculations relative to brute force methods. Rust (1987) used Newton-
Kantorovich (NK) iteration, summarized in Algorithm A1. This strategy applies to a model with an ergodic
clock so the fixed point can be expressed as the root of a system of equations. It relies on the state-to-state
transition defined in . First, initial Bellman iterations reduce , defined in Algorithm 2, below a threshold.
Then NK starts to update according to a Newton-Raphson step. Since NK is a class derived from
ValueIteration it inherits the ordinary method but also contains the code to switch.

Hotz and Miller (1993) introduced the use of external data to guide the solution method as described in
Algorithm A2. This class is often referred to as CCP (conditional choice probability) methods, because it uses
observed choices to obtain estimates of CCP and then map these back to values of  in one step without
Bellman iteration. Aguirregabiria and Mira (2002) extends the one-step Hotz-Miller as summarized in
Algorithm A8. This effectively swaps the nesting introduced in Wolpin (1984): likelihood maximization
changes utility parameters which are fed to  and then updates  through Hotz-Miller.

The Keane and Wolpin (1994) approximation method, described in Algorithm A3, is also derived from the
basic brute force algorithm. It splits iteration over the state space into two stages. At the first stage it visits a
subsample of states to compute Emax defined in . Information is collected to approximate the value function
on the sample. At the second stage the remaining states are visited to extrapolate  from the first stage
approximation using information that is much less costly to compute than the full Emax operation.

A user coding the Keane-Wolpin algorithm from scratch faces extensive changes to all nested loops. As
Keane and Wolpin (1994) report, the approximation can save substantial computational time but is not
particularly accurate. It can be useful to get a first set of estimated parameters more quickly and then either
increase the subampling proportion or simply revert to brute force.

A coder would likely copy their brute force loops and then "hack" them to carry out the two Keane-Wolpin
stages. Now the code has two nested loops that need to be kept in synch as the model changes. In niqlow the
two algorithms can be compared by simply adding three lines of code regardless of other changes in the model:

    ⁞
     vi = new ValueIteration();
     kw = new KeaneWolpin();
1    vi->Solve();
2    SubSampleStates ( 0.1, 30 , 200 );
3    kw -> Solve();

On Line 1 ordinary value iteration is used. Then on Line 2 the user creates a 10% subsample of reachable states
with a minimum of 30 and a maximum of 200 states at each . Line 3 then applies the KW approximation.
Output of the two solutions can be compared, and routines are available to compare the value function results
between two algorithms.

Another common problem combines Bellman iteration with the calculation of reservation values of a
continuous variable  where  and is IID over time. Like the choice-specific value shocks , values of 

 are neither stored nor represented as an element of the ordinary state vector. Instead,  affects equations in
the solution method and ultimately choice probabilities. The basic reservation value method is described in
Algorithm A4 along with the few changes required to convert the labor supply model to a reservation value
problem.

(10) Δt

V (θ)

P ⋆ V

(5)

V (θ)

t

Z, Z ∼ G(z) ζ

Z G(z)

21



4. PARAMETERS, DATA, AND ESTIMATION
4.1 Overview
In estimation, parameters contained in  are chosen to match the external data. The current estimates, , are
treated as if they were the true parameters. Most empirical DP publications contain a section that constructs the
sample log-likelihood function or the GMM objective. The econometric objective seems specific to the model
and difficult to automate across models. However, niqlow automates the computation of objectives built on
economic models for a various structural techniques. It integrates an OOP package for static optimization and
root-finding algorithms with the DP methods already discussed.

Most empirical DP uses variants of the nested algorithm introduced in Wolpin (1984) and illustrated as a
two-sided feedback loop i n Figure 3. Given  the DP model is solved and outcomes (CCPs) produced.
Parameters are changed by a numerical optimization routine. It is this feedback that MaCurdy (1981) avoided by
approximating the Lagrangian rather than computing its value based on the current value of the regression
coefficients.

Figure 4 illustrates more layers of dependency. The top (or outer) level is an optimization algorithm that
controls  The parameters are tied to an econometric objective at the next level down. Levels 1 and 2
correspond to the two sides of Figure 3 which hides the layers below.

The objective relies on a data set (level 3) which must be organized to match the model to external data
allowing for issues such as unobserved states and measurement error. Model outcomes and predictions use the
DP solution method (level 4). Finally, the base of the pyramid is one or more DP models.

Each level of Figure 4 must interface with the adjacent levels. The DP model must also access the
structural vector  controlled at the top level. niqlow provides classes for each level and the connective tissue
between them. This integrated approach then supports automated construction of estimation problems. That is,
the user need not write code for higher levels and can focus on the code at the base.

Figure 3. DP Estimation as a Two-Stage Cycle

ψ ψ̂

ψ
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Estimation methods such as Aguirregabiria and Mira (2002)'s pseudo MLE and Imai et al (2009)'s MCMC
estimation avoid computations within stages and swap the order of levels in Figure 4. Dedicated purpose-built
code to implement them looks very different than nested solution code. However, in niqlow the levels of
Figure 4 are modular. They can be re-ordered as long as different connections between objects representing each
level have been written.

Previous sections used the labor supply model to demonstrate how to build up a DP as objects derived from
the Bellman class, which corresponds to Level 5 of the pyramid. DP solution methods represent level 4. This
section discusses how Levels 2 and 3 are represented in niqlow.

Figure 4. Levels of Dependency in Empirical DP

4.2 Outcomes and Predictions
Data related to a dynamic program are represented by the Data class which has two built-in child classes. Data
can be based on either outcomes or predictions. An outcome corresponds to the point when all randomness and
conditional choices have been realized at a state. The complete outcome is a 6-tuple:

Y (ψ) ≡ ( α ζ ϵ η θ γr γf ) . (17)
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Some elements of  are never observed in external data. In particular, the continuous shock vector  and the
random effects vector  are treated as inherently unobserved. Only the agent knows these values at the point
they choose .

Empirical work requires outcomes to be defined that mask components of the full outcome. Outcomes
must also be put in a sequence to create the path of an individual agent. Unlike reduced-form econometrics
empirical DP data cannot generically be represented as a matrix or even a multi-dimensional array of numbers.
Instead, in niqlow they are stored as linked-lists of objects of the Outcome class. The next section builds on
outcomes to define "generic" likelihood functions. The niqlow code is shown to estimate the simple labor
supply model without the user coding the likelihood.

A prediction, on the other hand, is the expected value of outcomes conditional on some information. The
basic prediction integrates over all contemporaneous randomness conditional on  and the permanent variables:

This is what an agent expects to happen (in a vector sense) given that  has been realized but the IID state
variables have not. The continuous shock  is integrated out by the choice probability 

As with outcomes, the information not available in the external data will not always match up with the
conditional information in . And predictions must be put in sequence to create a path. After discussing
likelihod Section (5.5) returns to prediction and how they are used to construct GMM objectives.

4.3 Likelihood
There are three types of likelihood built into niqlow depending on what aspects of the model are observed in
the data. The types are labeled F, IID and PO. Each is a version of the full outcome  in which more
information is masked or unobserved than in the previous version. The type of outcome must match up to the
external data which is denoted 

niqlow can determine which likelihood to apply automatically from the data read into an
OutcomeDataSet object. The appropriate formula is computed without further user coding. Since each level
of information relaxes the previous one, the PO algorithm could be applied to the other forms. Using the more
restricted forms when possible speeds computation.

4.3.1 F: Full Likelihood
Define  as the full information outcome from the econometrician's point of view. It starts with  in  then
removes elements marked with :

To build a likelihood function using full information, first assume there are no random effects variables so
it is irrelevant that  is missing in . Then the likelihood for a single single observed outcome is the
probability that the observed action would be taken:
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This compact expression requires some explanation. The superscript has shifted to  and the model outcome is
shown with no superscript to avoid duplicate notation. On the right hand side is the conditional choice
probability. This takes one of the forms in - .

Since the observed outcome includes the action and all state vectors, their data values are inserted into the
conditioning values. niqlow integrates data and predictions so it inserts the observed values for the user. The
model and external versions of the data illustrated in Level 3 of Figure 4 correspond to  and 
respectively. Calculations such as  then enter an overall objective at Level 4.

4.3.2 All But IID Likelihood
Data rarely contain the full information outcome of a model as defined here. More common is the next case in
which  is unobserved. However, it is typical to observe additional function(s) of the full outcome to help
identify parameters of the model. For example, in the labor supply model the earnings shock  would probably
be unobserved. However, earnings is observed if the agent worked. Extra information of this form is sometimes
referred to as "payoff-relevant variables." In niqlow they are referred to as auxiliary outcomes, and they are all
placed in a vector 

This leads to the third outcome type:

The auxiliary outcomes have been added to the front of the outcome. The agent has more information than 
 so it is unnecessary for them to condition choices or transitions on  On the other hand, when the data is less

than the agent's defined in ,  can contains additional information.
Both the smoothing shock  and the IID state  affect the DP transition only through the choice of  This

means the IID outcome is sufficient to predict the next outcome as the agent would, namely using 
Likelihood of a sequence of individual outcomes can be constructed that integrates only over the IID elements.
The other IID vector in ,  does not satisfy this condition because it can directly affect the transitions of
other state variables.

The likelihood of an outcome when  is unobserved is an expectation of 

The choice probability component is weighted by the conditional probability of  given that it generates the
observed value of  In this case  can be discontinuous in  In the case of the labor supply model only
observed earnings on one of the 15 points of support for  would have positive likelihood. Further, if the set of
discrete values of  consistent with the model changes with a small change in  it causes a jump in likelihood.

It is standard to add measurement error to observed auxiliary values (and other states or actions) in order to
smooth out the IID likelihood. The measurement error is ex post to the agent's problem so it enters only at this
stage:

Here  is the likelihood contribution for the data given the model's predicted value for the auxiliary vector 
As shown below, niqlow includes built-in classes to add normal linear or log-linear noise to any outcome's
likelihood contribution derived from the Noisy class.
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4.3.3 Path and Panel Likelihood
So far we have considered a single decision point in the DP model. In general, a path of outcomes for an agent
is observed. The likelihood must account for stochastic transitions from one state to the next along the path.
Denote a single outcome on the path as  and the path itself as

The index  is not necessarily the same as model time  and since  is an element of  it does not need to be
specified separately. The corresponding observed path is  with  decisions observed. Random effects
in  create permanent unobserved heterogeneity along a path which must be accounted for now.

L e t  be the probability distribution of the random effects vector. The distribution can depend
implicitly on  and  Multiple paths with the same fixed effects are stored in a "fixed panel." These fixed
panels are concatenated across  in a "panel." A panel might hold simulated data only, but if external data will
be read in then it is represented in niqlow by the OutcomeDataSet class.

Suppose the information available at a single decision is either full (F) or everything-but-IID as defined
above. Let  indicate which type of data are observed. Then the likelihood for a single agent's path
is

The rightmost term is the model probability for observed state-to-state transitions which only applies before the
last observation on the path.

Efficient computation and storage of both the DP solution and this likelihood requires coordination.
Placement of the "nested" solution algorithm must be exact. When there are fixed effects the model must be
solved for the  combinations of  and  As discussed earlier, the endogenous state space  is not duplicated
for each combination of permanent values. Otherwise storage requirements would multiply -fold. On other
hand, this means each combination must be fully processed for a given structural vector  before proceeding to
the next group. The fixed panel must initialize a vector to contain  for each of its members and then store
partial calculations for  Only when the outer summation in  is complete can the log of the path likelihood
be taken and summed across paths to form the log-likelihood. This must then be repeated for each fixed effects
vector.

4.3.4 2-Stage Estimation
A version of ML estimation commonly known as two-stage estimation is available in niqlow (Algorithm 6).
Since it was used in Rust (1987) two-stage estimation has been used to reduce the computational burden of
maximum likelihood estimation. Parameters in the structural vector  must be marked whether they only affect
the transition of endogenous states or not. Consistent estimates of those parameters can be found without
imposing Bellman's equation using the observed transitions.
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{Y } = (Y0, … , YT̂ ) . (24)
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{Ŷ } T̂ + 1

γr

g(γr)

γf ψ.

γf

τ ∈ {F , IID}

L( {Y } (ψ̂) , {Ŷ } ) =
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More generally, in two-stage estimation each parameter is given one of the three markers by the user. The
full parameter vector then contains three lists (sub-vectors):

The first,  contains parameters held fixed throughout estimation, including weakly identified parameters or
ones set through "calibration." The second vector,  includes parameters that affect only transitions. The final
vector,  contains parameters that affect utility and the discount factor  if it is estimated.

At the first stage only  is estimated using the limited information path likelihood:

This is the same as  except "1" replaces the model's generated CCP. The likelihood conditions on the
observed choice can be computed without solving Bellman's equation for  The rest of the model setup is still
required to compute the outcome-to-next-state transitions along the path. After estimating  they are fixed at
those values and  is made variable. The likelihood reverts to . In niqlow a user implements 2-stage
estimation with a few lines of code.

Algorithm 5. 2-stage Estimation.

1. Set weakly-identified or other fixed parameters (contained in ).

2. Set initial values of  and ensure the optimizing algorithm does not vary other elements of the overall vector.

Do not iterate on  while maximizing the partial likelihood  by varying 

3. Fix all elements of  except the  vector. Iterate on  to compute CCPs and use the full path likelihood 

.

4. [Optional] Male elements of  as well as . Maximize the full likelihood to gain precision and compute

correct standard errors.

4.3.5 Type PO: Partial Observability
Implicit in  are two assumptions. First, the initial conditions for the agent's problem are known up to 
Second, the full action and endogenous states in  are observed so that the likelihood only integrates and sums
over IID values,  and  Calculation of  can then proceed forward in time and the path, starting with 

More generally, partial observability of the outcome creates a difficulty for computing the path likelihood
forward in time. Let  be a state variable in the endogenous vector  that is unobserved in the data at outcome 

 It could be missing systematically as a hidden state or incidentally for this outcome alone. It has a
distribution conditional on past outcomes that can be computed moving forward. So the contribution to
likelihood at  can be computed by summing over possible values of  weighted by its conditional distribution.
However, the distribution at  depends on the distribution of  at  So the distribution must be carried
forward in the calculation. Each unobserved value creates more discrete distributions to sum over.

ψ = (ψ0 ψp ψu ) . (26)
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Even if all the unobserved states are tracked and their joint distribution across missing information
computed, this can still be inadequate to compute the correct likelihood. With  missing at  suppose also that
the future point  it equals  in the data. However, that value happens to have zero probability of
occurring if  at  For example, if a stock was only at  at  it may be impossible for the stock to grow to

 by 
Since  was unobserved at  the forward likelihood included  in the sum and the distribution. Now the

contributions of paths that start at  must be eliminated between  and  The likelihood must sum over
only unobserved states conditional on past observed outcomes and future consistent outcomes. In general there
is no way to calculate the likelihood forward when endogenous states or actions are unobserved.20

Ferrall (2003) proposed Algorithm 6 to handle partial observability. Instead of computing the likelihood of
a path going forward in time, it is computed backwards starting at the last observed outcome  At any point 
the likelihood computed so far is not a single number. Instead, likelihood is a number attached to every state at 
that is consistent with the observed data from  forward. This avoids the trap of following paths forward that
end up inconsistent with later outcomes.

A one-dimensional vector of likelihoods, denoted  contains the information to track likelihood
contributions farther in the future. If, at a particular , the IID-level outcome is observed then this vector
collapses to a single point. Encountering missing values for a smaller  will expand the  to a vector again.
The algorithm works for the special cases of Full or IID observability as well, but moving backwards is slower
than algorithms that can move forward in . When data are read into niqlow the user flags which variables are
observed, and all other variables are treated as unobserved. As the data on the observed variables is read in
incidental missing values are also detected. Then each observed path can be assigned one of the three tags 

 and the most efficient path likelihood is then computed.
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Algorithm 6. Partial Observability Path Likelihood

Initialization

Set  Initialize  Define sets of outcomes  and , initialized as empty.

Iteration

1. Construct  as outcomes consistent with the current observation on the path, 

Here " " means that the model outcome has the same values as the data.

2. For all , define

Transitions inconsistent with observations later in the realized path are zeroed out.

3. Transition probabilities are multiplied by the conditional likelihood: ,

4. Decrement s. Swap  and 

5. If , return to step 1. Otherwise, handle initial conditions.

Initial Conditions

a. If the clock is finite horizon (and simple aging), then  corresponds to the first observed decision period, 

 If  then the same process as above is continued but all outcomes are consistent with the data

(because there is no data for ). If  and  is a singleton, then its likelihood is the path

likelihood. Otherwise, average the likelihoods of outcomes in  to collapse the path likelihood to a scalar.

b. If the clock is ergodic, then optionally weight initial outcomes on path with the stationary distribution defined

in .

4.4 Estimating the Labor Supply Model
Consider using external data to estimate the parameter vector  of the labor supply model. For simplicity other
parameters are held fixed so we can set structural vector as  Data for individual  is a path of the form:

s = T̂ . LPO
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[H]

[I]

[J]

All work decisions are observed and there are no gaps in model time ( ). Actual earnings,  depend
on the observed work choice:

The earnings shock  is unobserved when not working. It could be inferred from  except observed earnings, 
 include log-linear measurement error:

The auxiliary vector  appearing in  contains  The observed path does not necessarily start at . If it
does, then observed experience  equals actual experience because it can be computed from past work
decisions before sending the data to niqlow. Otherwise, we'll assume that  equals initial experience
(acquired perhaps through retrospect questions). In this case  is the likelihood for one observation with type 

To bring the simple labor supply model to this data, derive from LS a new class:
class LSemp : LS {
 static decl obsearn, dta, lnlk, mle, vi;
 static ActualEarn();
 static Build();
 static Estimate();
    }

Since LS is the parent class all its components are also in LSemp. LSemp does not declare Utility because
its utility is the same as LS. The model is built using the code already included in the base LS class:

    LSemp::Build() {
1.      Initialize(1.0,new LSemp());
2.      LS::Build();
3.      obsearn = new Noisy(ActualEarn);
4.      AuxiliaryOutcomes(obsearn);
5.      CreateSpaces();
        }

The required Initialize() function is called on line 1. The only difference with the earlier call is that
the state space  consists of LSemp objects not LS objects. The empirical version of the model shares the same
set-up as the earlier version, so LS::Build() can be called on line 2. Observed earnings is created as an
object on line 3. The Noisy class adds measurement error to the argument, actual earnings  coded as a static
function:

LSemp::ActualEarn() {
    return m->myEV() ? Earn() :.NaN;
    }

Line 4 of [I] adds obsearn to the auxiliary outcomes, which makes it an element of the  vector introduced in 
.

ts+1 = ts Ea,

Ea = {E()  if m=1
.  if m=0.

e Ea

Eo,

Eo = eνEa, ν ∼ N(0,σ2).
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[K]

The function for actual earnings requires some explanation. It uses Ox's .NaN code for missing values
when not working ( ). This is determined by m->myEV() instead of, say,  which was explained
earlier as returning the current value of m. That is used during Bellman iteration when  is taking on
hypothetical values.

At the estimation stage, however, the DP model must use the external value of actions to provide a
predicted value of earnings. This was seen in the likelihood  where the observed action  enters the choice
probability. niqlow handles this through its Data-derived classes that set values shared with the DP model.
myEV() is another method of action and state variables. It retrieves the realized value of the variable if called
during a post-solution operation such as likelihood calculation.

In ordinary econometrics, such as panel IV techniques, an endogenous variable is its own value. Only the
value in the data is relevant. The need for CV() and myEV() reflects the complexity of nested estimation
algorithms handled by niqlow and illustrated in Figure 4. At the solution stage variables must take on
hypothetical values to solve the model. At the estimation stage values from the external data set must be inserted
into the contingent solution values such as the CCP.

Estimate() contains the code to compute the MLE estimates of  and selected output from it is
discussed in Appendix D.

    LSemp::Estimate() {
1.      beta = new Coefficients("B",beta);

2.      vi = new ValueIteration();

3.      dta = new OutcomeDataSet("data",vi);
4.      dta -> ObservedWithLabel(m,M,obsearn);
5.      dta -> Read("LS.dta");

6.      lnlk = new DataObjective("lnlk",dta,beta);

7.      mle  = new BHHH(lnlk);
8.      mle -> Iterate();
        }

On line 1  is created as an object derived from the Parameter class designed to be manipulated by
optimization algorithms. Like state variable objects, the value of the parameter is the v member of the class.
Different classes constrain parameters in ranges of real numbers and vectors of related parameters like 

In the basic model  was an ordinary vector. Its value was set inside LS::Build() in [D]. In this version
the goal is to estimate  from data. So on line 1 its value is replaced. It now holds an object of the
Coefficients class. This is designed to hold a vector of freely varying parameters like regression
coefficients. A constant vector is needed as default for starting values. Since beta contains a vector before this
line, its current value can be sent as the initial vector. By the end of line 1 that vector is stored internally in the
object and beta now contains an object not a vector.

The code for the true earnings function LS::Earn() in [E] already included CV(beta). So when this
model is estimated it will retrieve the values from the parameter object under the control of an optimization
algorithm.

m = 0 CV (m),

m

(20) α̂
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β
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β
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In the first use of the labor supply model the simple VISolve() function carried out Bellman iteration
once. Its use of a solution method object was hidden from the user. Now that the solution method is nested
within a likelihood calculation it is not enough. The vi member holds the value iteration object (line 2).
Somehow this object must be embedded (nested) within the estimation procedure.

Lines 3-5 in [K] create the data set object. As illustrated in Figure 4 this handles both external data and
model predictions. The dataset object also needs to know which model outcomes are in the external data
(implying other variables should be treated as unobserved). Line 4 says that , , and observed earnings are in
the data and will have the same labels as their objects. Now the data can be read from a Stata file on line 5. A
column in the external data must hold the ID of each path and the value of  so that a panel of paths can be
created. Since they were not set explicitly in the code, the default labels will be used and must appear in the data
file to avoid an error. As Read() reads in the data it determines whether there are missing values along the
path and what type of variable is missing (an element of  versus other vectors that imply partial observability.)
By line 6 the class of likelihood function for each path in the data has been determined.

The DP solution method created on line 2 of [K] has already been embedded at line 3, because vi was sent
as the second argument when dta was created. Whenever a new likelihood evaluation is needed vi-
>Solve() will be called to re-solve the model. This is the "nesting" of the solution algorithm inside the
sample likelihood.

Line 6 creates the econometric objective. DataObjective expects a data set such as dta to be sent to
it. It has a built in method to compute the log likelihood. The objective is the "home" of the parameters to be
estimated, 

Lines 7 creates the algorithm to carry out the outer iteration of maximizing the likelihood. Note that the DP
model is analogous to the econometric objective lnlk, and the Bellman solution method vi is analogous to the
optimization algorithm. One difference is that the user's code must send lnlk to the optimization algorithm,
whereas the value function method does not take an object.

This example uses the BHHH algorithm (line 7), which is Newton's method except the outer product of the
likelihood's Jacobian matrix is used to approximate the Hessian. This happens without any special coding from
the user because any Objective object has two methods for evaluating itself. One returns a scalar. The other
returns a vector to be aggregated into the scalar. In this case, lnlk returns the vector of log-likelihoods for each
observation. In turn BHHH uses the vector version to compute the matrix of partial derivatives with respect to 
and then the outer product.

Line 8 in [K] calls the Iterate() method of the BHHH object to maximize the log-likelihood starting at
the initial values of  Values read in from a file can supplant the hard-coded starting values of beta. This is
analogous to Method classes for different DP solution methods, each having a Solve() function to carry out
the task on demand.

An additional 14 lines of executable code were used to estimate the simple labor supply model. The chains
of interactions in the code segment above matches the stacking illustrated in Figure 4. The DP model itself (the
base level) is implicit, because only one state space can be defined. The user's code could substitute different
classes at each level of the process without changing any other code. It can create different solution methods,
load different data sets, or compare different optimization algorithms on the same objective. None of these
changes require changing the underlying code for the DP problem as long as CV() and other preparations
discussed above have been used to make the code ready for alterations.
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4.5 Moments and Predictions
The example above uses MLE. The other main procedure used in empirical DP is GMM. In practice, GMM is
used when the information a likelihood function requires is either missing or requires auxiliary assumptions the
researcher wishes to avoid, such as imposing a conditional mean to be zero without assuming a full distribution
of the error term.

A prediction, denoted  was defined in  as the integral over current IID randomness and
conditional choices. Predictions always integrate over permanent random effects ( ) since they are treated as
unobserved. Predictions always condition on permanent fixed effects (  since they are treated as observed.
Thus, for each , there is a single predicted path, although multiple outcome paths (used for MLE and data
simulation) can be generated and/or observed in data for each . Concatenating prediction paths across
different fixed effects produces a prediction panel.

4.5.1 Sequence of Predictions
To simplify notation, the description here will focus on only the endogenous state vector . Begin with an initial
distribution over states, denoted  For example, if the initial state is given as  then this would simply be
a vector of 0s and one 1:  Or, in a stationary environment the initial conditions might be
the stationary distribution  defined in .

Now consider the distribution of  after  decisions,  This distribution starts from  and then
accounts for the distribution of actions at 0 and the subsequent states at  and so forth until  actions have been
taken. The prediction is the expected outcome over optimal conditional choice probabilities:

Computationally this involves a loop over the state space and an inner product of the outcome and
conditional choice probability vectors. Within the same loop, the distribution over states in the next period can
be computed recursively.

 is accumulated over current state transitions:

Once the prediction and next stage's distribution are computed,  is incremented and the process repeated
to form a path of predicted outcomes of a desired length.

Unlike path likelihood, which must deal with missing information along the path,  can be treated as the
full outcome. A1 displays one element of  vector, namely the action  along the path prediction for the
simple labor supply. The full vector would also include the state  The exogenous states would by definition
have time-invariant predictions and are not recorded in  However, they can enter auxiliary outcomes
which would be included in the prediction.
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The external data may have missing information. Continue to define  as the data but now is not an
individual path but an average across ex-ante identical agents sharing a value of  It includes only observed
components of the outcome. To match empirical moments (averages) to the model prediction , a masking
matrix  selects columns of the full outcome that are observed at stage  Then the differences between the
predicted moment and the empirical moment is

Masking is applied to the predicted moment only to make it conform to the external data vector.

4.5.2 GMM Objectives
Returning to the differences between averaged data (moments) and predictions defined in , concatenate
them along an observed path:

To form an econometric objective the vector of differences is aggregated into a scalar value. There are 3 types of
GMM objectives built into niqlow. The simplest case is a weighted sum of all differences:

The negative sign appears because objectives are maximized. The user specifies the weights  to place on each
observed moment  at each point  including an option to set all weights equal. These weights can also be ad
hoc "importance" weights. Further, the number of observations averaged at each  can be read in so that weights
also account for precision in the empirical moments. If the model includes different observed groups ( ) there
is a summation over their separate values of in  and the subsequent forms.

The next option is to specify a matrix or matrices to account for contemporaneous correlations between
observed moments:

Finally, efficient GMM requires that a weighting matrix for the full path of moment differences:

The efficient matrix  can be computed from individual data if available and the empirical moments are
computed from them. However, this is not helpful if GMM is used because only moments over individual paths
are available. niqlow includes procedures that will simulate individual paths and then compute  from them
using a first-stage (consistent but inefficient) parameter vector.

The previous section discussed all the code involved in estimating the labor supply model using MLE.
Much of that code would remain if GMM were used instead. The key differences would be a single statement:

    momdta = new PredictionDataSet(UseLabel,"avgdata",vi);
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The first line creates a prediction data set and specifies that vi is the nested solution method object to be called
whenever the objective will be re-computed. This also specifies the default weighting scheme in . The
statements to match outcomes to data columns, create the data objective and read in the data are essentially the
same as with MLE.

4.6 Roadblocks
Return to the question posed earlier: Why does MaCurdy (1981) now take one Stata command but Wolpin
(1984) still requires purpose-built code? First, MaCurdy (1981) keeps data, model predictions, and estimated
parameters from having multifaceted roles. Dynamics is concentrated into the Lagrange multiplier which can be
approximated as a fixed effect. Hours of work, while a choice within the lifecycle model, only enters the model
as an observed data point. Tracking other contingent choices are not required. Thus, hard-wired code for panel
IV and other similar methods could move towards an OOP approach as followed by Stata, R and other current
platforms.

In Wolpin (1984) the binary choice prevents dynamics from concentrating into a Lagrange multiplier.
Estimated parameters are not just coefficients on observables. Instead they enter choice probabilities through
their effect on the value function. Choice probabilities are contingent, and the observed choices determine which
ones enter the likelihood. When faced with these data and parameter interactions no software emerged to
assemble a DP model and derived its empirical content from pre-defined components.

Empirical DP remains compute bound: processor speed is a limiting factor to the scale of the model.
Custom-built compiled code can be the most efficient in execution speed. But the interlocking roles of data and
parameters illustrated in Figure 4 results in "hard-wired" details for the given model. A change in the model
requires rewriting deep code.

Reduced-form estimation is not as computationally intensive and lacks hidden layers such as solving
Bellman's equation to compute choice probabilities. This research could move to platforms such as Stata even
when it was restricted in storage and speed compared to purpose-built compiled code. Meanwhile, empirical DP
continued to require fast single-purpose code for each application. Once complete there is little incentive to
return to the code and make it general, which would be difficult for the reasons given above. Even when code is
freely shared with others it is of limited use to someone building a different but related model. So, unlike panel
IV estimation represented by MaCurdy (1981), no natural shift occurred from bespoke PP code to use of off-the-
shelf OOP components for the empirical DP approach introduced by Wolpin (1984).

To overcome this roadblock, niqlow did not start from purpose-built code. Instead, it started with OOP
representations of generic DP models before solving a single specific model. Classes encode features of
elements independent of the rest of the model so the model can be built from components. This creates
computational overhead compared to, say, nested loops in a compiled language. However, as discussed in
Section (3.3), efficiencies in the design of niqlow are coded once-and-for-all. Integrated data and optimization
tools further reduce specialized coding.

Custom-built, expertly-tuned code for a single problem will always run quicker than equivalent code in
niqlow if the starting line for the comparison is set to when programs start executing. If, instead, the starting
line is set at the first attempt to build the model then time-to-completion is likely to even out.

(32)
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5. CONCLUSION
This paper introduces an approach to empirical dynamic programming that eliminates the need for custom
coding of each project. niqlow is an open-source platform that uses object oriented programming (OOP) to
provide its user a set of tools to design, solve and estimate a model. It recognizes that empirical DP involves
multiple phases: computing the value function; updating choice probabilities; evaluating the likelihood for data;
adjusting parameters to find consistent estimates; and finally simulating the effects of policy experiments. To
accomplish these phases the niqlow user need not re-invent the wheel. Instead their code consists primarily of
high-level statements that select off-the-shelf components of standard models.

There is little evidence from the literature that sharing purpose-built code for a published paper has
promoted verification or direct extension of already published empirical DP work. Referees of empirical DP
models are also rarely in a position to replicate results reported in manuscripts. Finding bugs in purpose-built
code for a large empirical DP model is never going to be practical. At best, referees can point to discrepancies in
output that might be caused by mistakes that the authors can work to resolve.

Results generated from empirical DP papers have played at best an indirect role in shaping policy. One
reason for this is skepticism among researchers not performing empirical DP themselves. Results are opaque,
not independently verified, and rarely subject to robustness checks. Thus, a conundrum exists: empirical DP
results are not trusted in part because they are based on purpose-built code that is rarely if ever verified. Because
the results are not trusted they rarely play a role in policy debates. Since they do not influence policy, unverified
results stay unverified for lack of relevance.

Perhaps niqlow is a step towards closing the structural coding gap, which lowers the cost of producing
new results and replicating old ones. This in turn may make results more relevant and comparable to reduced-
form methods already produced by portable and easy to use code. 
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NOTES
1 Recent reviews of the literature include Aguirregabiria and Mira (2010) and Keane et al. (2011). Recent

advances in solution methods include Imai et al (2009), Arcidiacono and Miller (2011), Kasahara and
Shimotsu (2012) and Aguirregabiria and Magesan (2013).

2 VFI Tookit is described in Kirby (2017), and Kirby (2021) reports 14 replications of dynamic macro papers
using it. QuantEcon (https://quantecon.org/) is a collective effort to create useful tools.

3 As Dynare and VI Toolkit are packages in Matlab, niqlow is written in Ox, which is free for research
purposes and runs on most systems. Current niqlow syntax is used here and the code is included in the
examples in niqlow distribution. The current version has no graphical user interface or menu system, but
the OOP approach makes it straightforward to build one.

4 If Wolpin (1984) had followed MaCurdy (1981) it would have relied on a panel probit model. However, unlike
Euler equation based model, the forward-looking factors in a discrete choice model cannot be isolated to a
single Lagrange multiplier. An "approximate" structural approach in Wolpin (1984) that avoided a nested
solution would have likely been a poor approximation and possibly more costly to compute than the exact
solution.

5 Statistical packages such as Stata rely on OOP in the underlying code, but users are somewhat sheltered from
OOP concepts in using them. No other platform I am aware is designed as a general platform for doing
model-based empirical economics, whether object-oriented or not.

6 In the context of solving economic models, "data" refers here not just to the observations in a statistical
analysis but also parameter values, prices, choices, state variables, etc. These are the quantities that the
program is processing in order to solve and estimate a model.

7 The emphasis in niqlow is placed on discrete actions and discrete states, but some elements of the core code
includes continuous state variables and continuous choices can be incorporated. Methods for continuous time
models can be added as well.

8 The shock vector  can be multiplicative instead of additive. The additive form is more common and is the
default in niqlow.

9 It is possible to describe dynamic programming without defining  However, empirical DP explains
probabilistic choices, usually by integrating over the addition shock. The values of individual choices are
needed to compute the choice probabilities beyond defining or solving the DP.

10niqlow also includes model classes based on normally distributed additive shocks, both ex ante and ex post.
11 This use of static variables to replace action and state variables is critical to memory management. If they

were not static, each point in the state space would have its own version of the variables duplicated across the
state space  As static members they do not increase memory requirements along with the state space. The
state-specific (non-static) members which expand with the size of  are kept to a minimum.

ζ

v (α, θ) .

Θ.

Θ
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12 An action counter has a deterministic transition. We can also express this as a stochastic process 
 Each state variable class has a Transit() method which returns a pair of values: a

vector of feasible integer values next period and a matrix of transition probabilities corresponding to feasible
actions (rows) and feasible state values next period (columns). Because  was added to the model its
Transit() function will be called at each state along with all other transitions. The transitions for all state
variables are combined to form  which ends up as a vector of feasible state indices and a matrix of
probabilities.

13 In between the normal aging and stationary are mixed and random clocks. For example, a model may have a
sequential phase during  matters but eventually reach a stationary phase:

In an ordinary lifecycle model  is a final period, but under this clock the agent stays in the final period
forever. Also, a lifecycle model might incorporate early mortality:

The last period  is death which may have an intrinsic value (such as bequests). The current value
function depends on values for two different future times,  and  These and other clocks are built
into niqlow.

14In addition, niqlow stores the transition  at each state because they are needed for simulation and
prediction. The transitions are stored for each  using a sparse method that tracks only feasible new state
indices and the vector of probabilities conditional on choices. The transitions of the IID vectors  and  are
stored once and combined with the  transition to determine the full state-to-state process.

15 In complex models there are other ways states become unreachable. How the user specifies this is illustrated
in Section (3.5).

16 Computing  naively involves a large matrix calculation that includes mainly zeros. Instead, niqlow uses
Ox-specific syntax to reduce select only relevant matrix elements to process. Using an interpreted language
such as Ox includes overhead, but features of the syntax such of this can result in fast as well as simple and
general code.

17Since outcomes and predictions require solutions are available for the problem, the algorithms must solve each
group's problem and process it before the next one. The simple VISolve() function can only be used with
heterogeneity to solve the problems. Use of the solved solutions requires nesting the a solution method within
the use of the solution as discussed Section (5.4).

18 Other important qualifiers include the presence of IID state variables and terminal states at which Bellman
iteration is not applied. niqlow allows the user to control these and other details of the model.

P(s′) = Is′=s+Ia=k
.

M

P(θ ′;α, θ)

t

t′ = { t + 1  if t < T − 1
T − 1  otherwise

T − 1

t′ = { t + 1 prob. 1 − λ(θ)
T − 1 prob. λ(θ)

(35)

T − 1

t + 1 T − 1.

P (θ ′;α, θ)

θ

ϵ η

θ
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19DP models coded in FORTRAN and relying on an array of indices to represent the state vector run into a hard-
limit of 7 subscripts or counts of state variables. niqlow avoids this altogether by mapping a
multidimensional space into one dimension. That is, if  is a vector of state variable indices, then the state's
one-dimensional index is , where  is a row vector of offsets that depend on the number of values each
state variable takes on. In addition, as in other interpreted languages, the length of a vector such as  can be
set dynamically during runtime in Ox.

20 One approach for computing likelihood with unobserved states is to use simulation of outcomes based on
optimal choices. This is an effective way to calculate the likelihood for a given set of parameters. The
complication is ensuring that the simulated value is continuous in estimated parameters.
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APPENDIX
Appendix A. Example of PP vs. OOP Coding
To illustrate differences between OOP and PP, consider a package written by a programmer to be used by
economists (users): first using the PP paradigm only and then using OOP. The package, named Marshall,
solves for Marshallian demand for a consumer with utility  defined on a vector  and a given price vector 
and income 

Most readers have probably coded an objective and then called a built-in optimization procedure to optimize
that function. Marshall is a specialized version of that general problem.

The PP package documentation explains how users should code  in order to interact with tools in the
package. The user codes u(x), and sends it to a built-in procedure of the form demand(u,p,m). That
procedure uses algorithms to compute  Suppose the user wants to use the Cobb-Douglas function, 

 Using "pseudo-code" the key parts of the user's program might look like:
#uses Marshall
u(x) {
    return sum_i ln(x[i])
    }
qdemand = demand(u,prices,income)
print("x* = ",qdemand)

Now consider the OOP version of Marshall. The programmer might define a class for a consumer:

classclass Consumer {
    membersmembers
                xstar, p, m
    methodsmethods
                demand()
                budget(p,m)
        virtualvirtual u(x)
    }

The syntax is pseudo code similar to actual OOP languages, including Ox. The method u(x) belongs to the
Consumer class and does the work of computing utility. The budget parameters are stored as members of the
class. These will be set by passing them to the budget() method. The method demand() is the same as the
PP procedure above, but it will get the information it needs from the data members rather than from arguments.
It stores the result in the member xstar.

The package comes with the Cobb-Douglas function set as the a default to demonstrate the package
without any coding. Now  is coded as a method of the Consumer class:

Consumer::u(x) {
    returnreturn sum( log(x) )
    }

Unlike an ordinary function, the code for u() has the prefix of the class it belongs to. Code for the other

U(x) x p

m :

x⋆(p,m;U) ≡ arg max x:px≤m U(x).

U()

x⋆(p,m).

U(x) = ∑ lnxi.

u()
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methods would also be part of the package. User code to create a Consumer object, set the budget to already-
defined values, and solve for  might look like this:

#uses Marshall
    ⁞
agent = newnew Consumer()
agent -> budget(prices,income)
agent -> demand()

Here the new operator makes an object from the Consumer template and stores it in the variable agent. The
code above would use the built-in utility and compute quantity demanded at the prices and income sent to the
budget operator. The syntax object -> method() is a common way to invoke a method for a particular
object. That is, instead of sending  to demand() in the PP approach, the data specific to agent is
automatically available to the demand() method belonging to agent.

The code so far uses a built-in utility. To use, say, a CES utility the user creates a class derived from
Consumer.

classclass CES : Consumer {
    membersmembers  a
    methodsmethods  u(x) CES(ina)
    }
CES::CES(ina) {     a = ina    }
CES::u(x)     {     return sum_i (x[i]^a)^(1/a)    }
⁞
agent = new CES(0.2)
agent -> demand()
⁞

The first line shows that CES is a child of Consumer. The new class does not declare its own demand()
method, because CES inherits the version from Consumer. The user also provides a method that is called to
create a new object. This constructor has the same name as the class in the pseudo code. The CES parameter is
passed to it and stored in CES.a, ready to be used by CES::u().

When demand() is invoked, the user-provided CES::u() is called instead of the default version written
by the programmer. The user has not changed, and perhaps cannot even see, the original code for demand().
This is because the programmer marked Consumer::u() as virtual. By doing so the programmer gives
the user a controlled ability to change the underlying code through insertion a replacement function. In the PP
packaged this injection of code was accomplished by passing u to the demand function. When many functions
need to be replaced in many algorithms the PP framework can become unwieldily and unreliable. The OOP
approach scales more efficiently for both the programmer and the user with problem complexity. With OOP it is
easier to ensure the right data and the right functions are being used within the package.

The programmer can create a taxonomy of classes for the user to choose from. In this simple case,
Marshall might not just have a single Consumer class. It might have child classes for different classes of
utility. The user can then start with one of those classes to specialize or extend it for their model. An OOP
package can provide the user with a menu of options, an important part of the niqlow approach to empirical
DP.

x⋆

u
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Appendix B: Code Segments and Additional Explanation of niqlow
Features.

 and  in Code Segment E
If the action counter  were an ordinary programming counter taking on values between 0 and 39 then the
statement E.1 would not require sending it to CV(). A simple assignment D=M would set D to the current value
of M. However, M is an object of a class so it is not the same as its value. Instead, the current or counter value of 

 is a member of the object. Classes in niqlow that represent DP variables have a member v that holds the
counter or current value of the variable. The internal code sets the value of v to correspond to the current state 
before code such as Utility() is called. The function CV(M) returns M.v. So either D=M.v; or
D=CV(M); is how user code would set D to the value of  at the current state.

Recall that utility is treated as a vector valued function corresponding to the feasible set  Since  is
an action variable its current value is not a scalar at  In this simple one-choice model the current value is

always the same:  If other actions were added, or if constraints on feasible actions were

imposed on choice, the current value of  would be a different length because the number of distinct actions 
would change.

Since  is a simple count variable, it takes on values like a loop counter or index. The earnings shock , is
also like a loop counter, so its Its counter value ranges from 0 to 14. However,  is a discretized normal random
variable and the counting values are associated with both positive and negative real numbers, i.e. quantiles of
the standard normal distribution, such as  the 10th percentile of . The user's code can carry out
these transformations of the integer value e.v, but niqlow can track actual values of variables for the user.

The actual values of an object are stored as vector member actual. Thus the actual value at any point is
actual[v]. The current value is an index into the actual vector. The function AV() function retrieves this
value, so when   might equal -1.282. For  the actual vector is (0 1 … 39) and
actual[v]=v. That is, the default is that AV(s)=CV(s). Only in the case like a discretized normal will
there be a difference. The user can set actual values for their state and action values and can make them
dependent on structural parameters.

Semi-Exogenous State Variables
An example of an IID process that could be sorted into  but not  is a wage offer  with on-the-job search. If
the offer is accepted it determines earnings this period also the existing wage next period. The existing wage is
then a state variable placed in  because its transition depends on choices. Next period a new IID outside shock 

 is realized as well, but current  affected the transition beyond its influence on the action  so it must be
placed in  not 

CV () AV ()
M

M

θ

M

A(θ). m

θ.

CV (m) = ( 0
1

) .

m α

M e

e

−1.282, N(0, 1)

CV (e) = 3 AV (e) M

η ϵ h

θ
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[L]

[M]

acc = new BinaryChoice("acc");
offer = new  LogNormal("offer" , 10);
curw = RetainMatch(offer,acc,1,0);
ActionVariable(acc);
SemiExogenousStates(offer);
EndogenousStates(curw);

Additional Actions and Restricted Choices
Starting with the basic labor supply model suppose the user wants to add a choice to attend school or not ( ) and
a state variable to track accumulated schooling:  The agent cannot attend school and work in the
same period, so the choice vector and feasible set are now

Although initialization and space creation can only occur once, in between new variables can be added to the
vectors more than once. So the extended build is simply:

LSext::Build() {
    ⁞
    LS::Build();
    s = new BinaryChoice("att");
    S = new ActionCounter("sch",8,s);
    Actions(s);
    EndogenousStates(E);
    ⁞
    }

The base version added m to the action vector. This adds s to it. S is an action counter like M but limited to 8
years of additional schooling to reduce the size of the state space.

The user must tell niqlow to impose the condition that the agent can either work or study but not both.
This creates an additional trimming of unreachable states:  In this approach the agent has to impose
this extra condition on reachable states. The user replaces two built-in virtual methods with their versions:

LSext::FeasibleActions() {
    return CV(m) .* CV(s) .== 0;
    }
LSext::Reachable(){
    return CV(M) + CV(S) <= I::t;
    }

The first returns a vector of ones and zeros that indicates whether an action  is feasible at the current state  It
says the product of each row of the action vector must be 0. Ox syntax allows the expression to closely match
the definition of  The second returns a scalar 0 or 1 to indicate whether the current state is reachable from
initial conditions. It needs to know what the current value of  is which up until now was not required. Since the
clock is stored internally niqlow places its current value in the I class, so I::t is always available as well as
other indices of the current state.

s

S ′ = S + s.

α = ( s a ) ∈ A(θ) ≡ {α :  s ∗ a = 0} .

M + S ≤ t.

α θ.

A(θ).

t
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Augmented State Variables
The current library of pre-defined state variable types in niqlow include counters, accumulators, lagged values,
durations, and discrete jump processes. A user can also provide a Markov transition matrix for an arbitrary
process. Many estimated DP models contain state variables that customize these basic versions. For example,
some models may "freeze" a state variable at it's current value after some period  In some models a state
variable stops being relevant to the agent's problem at some point. For example, a model of schooling and work
might track credits earned while still in school, but once out in the labor market credits no longer matter and
tracking them is inefficient. These are called augmented state variables in niqlow.

Here are 3 augmented state variables:
    x = new Freeze( new ActionCounter("sch",8,s), 15 );
    y = new Reset(b,a);
    z = new ForgetAtT( new ValueTriggered(d,tvar,1,5), 20 );

The first one starts with the schooling variable added to the labor supply model. Instead of adding it directly it is
augmented to freeze at its value from  and forward. The base variable  is is created and sent to Freeze
which then wraps the augmented transition rules around the base transition.

State variable  augments a base state variable  (not shown here) so that its value resets to 0 whenever the
agent sets the action variable  to 1 (also defined elsewhere). This is a special case of the general
Triggered() augmentation. Several triggers besides the simple reset are already coded. Finally, z is a double
augmentation of a state variable  and another state variable  . First, when tvar=1  will reset to 5. From 

 and onward the value of  is not tracked because of the ForgetAtT augmentation. Forgetting a sate
variable means its value is simply  from then on, which avoids expanding the state space
unnecessarily.

Complete Code and Output for the Labor Supply Example
This Ox code is available in the examples folder in the niqlow download. A few lines are different than the
code in the main body to account for the reservation wage extensions.

t⋆.

t = 15 x

y b

a

d tvar. z

t = 20 z

CV (z) = 0
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[N]#import "niqlow"
class LS : ExtremeValue {
    static decl m, M, e, beta, pi;
                Utility();
    static      Build(d=FALSE);
    static      Create();
    static      Earn();
    }
main() {
    LS::Create();
    VISolve();
    ComputePredictions();
    }
LS::Build(d) {
     SetClock(NormalAging,40);
     if (isint(d)) {
        e = new Nvariable ("e",15);
        m = new BinaryChoice("m");
        Actions(m);
        ExogenousStates(e);
        }
     else
        m = d;
     M = new ActionCounter("M",40,m);
     EndogenousStates(M);
     SetDelta(0.95);
     beta =<1.2 ; 0.09 ; -0.1 ; 0.2>;
     pi = 2;
    }
LS::Create() {
    Initialize(1.0,new LS());
    Build();
    CreateSpaces();
    }
LS::Earn() {
    return  exp( (1~CV(M)~sqr(CV(M))~AV(e)) * CV(beta) ) ;
    }
LS::Utility() {
    return CV(m)*(Earn()-pi) + pi;
    }
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Figure A1. Predictions for the Labor Supply Model

 t           m           M                 t           m           M
  0      0.3982      0.0000                20      0.1540      4.9016
  1      0.3761      0.3982                21      0.1508      5.0556
  2      0.3537      0.7743                22      0.1480      5.2064
  3      0.3319      1.1279                23      0.1456      5.3545
  4      0.3111      1.4598                24      0.1434      5.5000
  5      0.2918      1.7709                25      0.1414      5.6434
  6      0.2741      2.0628                26      0.1397      5.7848
  7      0.2580      2.3369                27      0.1382      5.9246
  8      0.2434      2.5949                28      0.1369      6.0628
  9      0.2303      2.8383                29      0.1358      6.1997
 10      0.2186      3.0686                30      0.1348      6.3355
 11      0.2082      3.2872                31      0.1339      6.4703
 12      0.1989      3.4954                32      0.1332      6.6042
 13      0.1907      3.6944                33      0.1325      6.7373
 14      0.1834      3.8850                34      0.1320      6.8699
 15      0.1769      4.0684                35      0.1316      7.0019
 16      0.1712      4.2453                36      0.1313      7.1335
 17      0.1661      4.4165                37      0.1310      7.2648
 18      0.1615      4.5825                38      0.1309      7.3958
 19      0.1575      4.7441                39      0.1308      7.5267
 

How can we confirm that these results are correct? First, it is eaasier to check the CCP and EV values at each
state instead of these averaged predictions. However in general the best way to confirm results is to set
parameters of the problem so that output can be compared to known true values.

In this model we can push the smoothing parameter from 1.0 to near 0 and to very large:
    Initialize(1.0,new LS());         Baseline
    Initialize(0.001,new LS());       Near perfect smoothing
    Initialize(100.0,new LS());       Almost no smoothing

Make the agent myopic so that only current utility matters. CCP's are easy to compute at any state:

    SetDelta (0.95);                  Baseline
    SetDelta (0.0);                   Static decisions

Make the environment static by eliminating the effect of endogenous states:

    beta = <1.2 ; 0.09 ; -0.1 ; 0.2>;   Baseline
    beta = <1.2 ; 0.0; 0.0; 0.2>;       Static environment (no experience)

Once the extremes are confirmed we can deform the problems slightly and see that the output moves in the right
direction.

Unlike purpose-built code, in niqlow these kinds of tests use the same underlining code for all models. In
addition, the behavior of a state variable class, such as ActionCounter can be confirmed in a small test
program. Then it is very likely it will perform correctly in any other problem.
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Certainly not all bugs have been discovered let alone fixed in the current niqlow code. And varying
parameters of a single model will not reveal all errors. However, as changes are made that might break code that
used to work, a suite of test programs are run to make sure that output is still correct. In that sense the changes
to experiments on the labor supply model are important for a user to run in order to overcome healthy
skepticism. However, the kinds of errors that might uncover have been squashed by checking test program
output that include many other features than the labor supply model but in smaller spaces. There are also
debugging features that can be turned on to trace output when a bug has been discovered.

Appendix C: Solution Algorithms
These algorithms are explained in Section (4.2). Aguirregabiria and Mira (2011) review several methods in
more detail.

Algorithm A7. Newton-Kantorovich Iteration

Initialization

Initialize as in Bellman iteration above. Set a threshold  for switching to N-K iteration. Since the model is

stationary SetP is initially FALSE. A new flag, SetPtrans also starts as FALSE.

Iteration

Begin with Bellman iteration (Algorithm 2), inserting a check for 

When this occurs. set SetP=TRUE and SetPtrans=TRUE to compute the state-to-state transition  on each

iteration.

Replace step c in Bellman iteration that computes  with:

c. Compute

ϵNK

Δt < ϵNK .

(10)

V0 = Emax(V1)

→
Δ t ≡ Emax(V1) − V1

g ≡ (I − δP(θ ′; θ))−1 [→
Δ t]

V0 = V1 − g
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Algorithm A8. Hotz-Miller Inversion

Initialization

Construct empirical conditional choice probabilities, , where  and  are empirical observations of each

combination of 

Inversion

At each point  construct

Compute the vector of values consistent with empirical CCPs

P̂ (a; q) a q

(α, θ).

θ

Q(θ) = P̂ (α; θ) [U(α; θ) + γE − ln(P̂ (α; θ))] (36)

g ≡ (I − δP(θ ′; θ))−1 [→
Δ t]

V0 ≡ g ∗ Q

(37)
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Algorithm A9. Keane and Wolpin Approximation

Initialization

Create a random subsample of states for each , denoted  Sampling can vary over  with minimum and

maximum counts of sampled states.

Iteration

Follow these steps at each 

1. For all :

Store action values at a single  (the median or mean vector):  and maxE 

if , compute Emax  , averaging over all values of the IID state vector :

2. Approximate  on  as a function of values computed at . The default runs the regression:

That is, the difference Emax-maxE is a non-linear function of the differences in action values at the median

shock.

3. For  compute  extrapolate the approximation:

Carry out update conditions for  as in Algorithm 2.

Notes: The user can provide a replacement for the regression specification or the approximation
method by replacing virtual method of the KeaneWolpin class.

Algorithm A10. Aguirregabiria Mira Iteration

Initialization

Estimate transition-specific parameters using step 1 of Two-Stage Estimation.

Carry out Hotz-Miller inversion to compute initial CCPs and value function, denoted  and  These are the

stage  of AM iteration.

Iteration

Estimate utility-specific parameters ( ) using the full path likelihood.

At stage , compute  as  from  to evaluate the likelihood. Current values of  enter  and

interact with prior values of  and  enter 

Iteration is complete when  is less than tolerance. Otherwise, use the Hotz-Miller inversion in 

to update  based on the new choice probabilities.

t ΘS
t . t

t.

θ ∈ Θt

ϵ0 v0(α, θ) = v(α; ϵ0, θ)

= V0(θ) = max v0(α, θ).

θ ∈ ΘS
t = V ϵ

V (θ) = ∑
ϵ
 [max α∈A(θ)  U (α; ϵ, θ) + δE α,θ V (θ ′)]  f (ϵ) .

V ΘS
t ϵ0

V̂ − V0 = Xβt = ( (V0 − v0) √V0 − v0 )βt.

θ ∉ ΘS
t , v0(θ),

V (θ) = max{V0(θ),V0(θ) + Xβ̂ t}.

t

P̂ 0 V0.

k = 0

ψu

k > 0 P̂ k P ⋆ (7) ψu U()

Vk P̂ k v (α, θ) .

∥Pk − Pk−1∥ (37)

Vk
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Appendix C: Reservation Values
For a binary choice , there is a single  at each (implicit) state that solves  Let 
denote . After some rearranging  satisfies

The differences between current and future values balance, and  are solved as a non-linear equation. The
condition that future expected values cannot depend on current  avoids a more complicated condition. Each
additional choice beyond binary adds another equation between adjacent values to be solved simultaneously.

Once  has been found, Bellman iteration requires calculation of the expected value of arriving at the
(now explicit) state 

These conditions are illustrated in A2. Conditions -  include three additional objects that the user's
code must provide. The first condition for  needs  a vector of utilities for candidate values of 
while solving for  The second includes  and the vector of expected conditional utilities, 

 and 
The model must satisfy several conditions described there to be eligible for this solution algorithms. These

are enforced by allowing only models derived from the OneDimensionalChoice class to use the
ReservationValues method.

1.  must be one-dimensional (only one variable added to the action vector);

2. No smoothing shock  is included (because  plays that role);

3. No state variables are placed in  and  vectors (because reservation values must be stored using );

4. Choice values  must the single-crossing property.

The user must parameterized the model to enforce the last condition. Any IID state variables must stay in  so
that the value of  can be stored conditional on their values as well.

OneDimentionsalChoice adds two virtual functions that other Bellman classes do not. The two
functions are Uz() and EUtility(). At  the difference in current utility equals the discounted difference
in future values. The user codes Uz(z) to return utility of all choices at . The reservation value solution
method uses that to solve for  Backward induction requires the expected utility of each option conditional
given the optimal value , hence the need to provide EUtility().

a z⋆ v(1, z⋆) − v(0, z⋆) = 0. EVi

EV (θ ′ | a = i) z⋆

U(1, z⋆) − U(0, z⋆) = δ [EV0 − EV1] . (38)

(38)

z,

z⋆

θ :

EV (θ) = G(z⋆) (E [U|a = 0, z < z⋆] + δEV0)

+ (1 − G(z⋆)) (E [U|a = 1, z ≥ z⋆] + δEV1) .
(39)

(38) (39)

z⋆ U (A(θ), z) , z

z⋆. F(z⋆)

E [U (0) |z < z⋆] E [U (1) |z ≥ z⋆] .

α

ζ Z

ϵ η θ

v (α, θ)

θ

z⋆

z⋆

z

z⋆.

z⋆
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Algorithm A11. Reservation Wage Iteration

Initialization

Categorize each  as an element of  if reservation values are needed there. The default is yes unless the user

provides a Continuous() method. If so, create storage for  at 

Iteration

Follow these steps at each 

1. At each  initialize  solve for  based on the user-provided  When completed store  at 

Use EUtility() that provides  and  to compute  based on .

2. For  not in  compute  as in Bellman iteration but with a single action available.

Carry out update conditions for  as in Algorithm 2.

Figure A2. Conditions for Reservation Values

Code for the Reservation Value Labor Supply Model
For the basic labor supply model, the earnings shock  is a discretized normal. Change that assumption so it is a
continuous standard normal random variable, re-labeled  The class created for this version will be named LSz.

θ ΘZ

z⋆ θ.

t.

θ ∈ ΘZ z z⋆ Uz(A(θ); z). z⋆ θ.

F(z⋆) E[U|A(θ), z⋆] V (θ) (39)

θ ΘZ V (θ) = U(α; θ) + δEV (θ ′)

t

e

z.
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Earnings are now written

Since  exceeds the value of not working ( ) for large enough values of  there is a reservation value for the
choice  Since LSz must be a one-dimensional choice model it cannot be derived from LS as was done
earlier with LSext.

However, code from the basic model can be reused because most elements of LS are static. The only non-
static member was Utility(). By using the static elements a change to LS will still be reflected
automatically in LSz. In particular, LSz::Uz() can use LS::Earn() to utility at . First set the value of
LS::e to z then calls LS::Earn().

In the model expected utility of not working is simply . For working, expected utility involves 
. The Mills-ratio formula for log-normality gives expected utility conditional of acceptance as

The constant factor includes , because it is coefficient on the normal random variable  (and hence the
variance of the model shock). The ratio of  values is new to the continuous specification and can't be
borrowed from the discretized LS.

However, note that only the constant term includes the Mincer equation, and it is the same as the original
earnings function if  So again the base LS::Earn() function can be used by setting the value of e
first. Thus, even though LS was coded for a completely different approach its specification is still synchronized
with the reservation wage version. Only elements specific to the new version need to be coded.

This code segment converts the labor supply model to a continuous choice reservation value problem.

E = exp{β0 + β1M + β2M
2 + β3z}.

E π z

m = 1.

z

π

E[eβ3z|z > z⋆]

E[U|m = 1, z > z⋆] = exp{β0 + β1M + β2M
2 + } . (40)

β2
3

2

Φ (z⋆/β3 − β3)

Φ (z⋆)

β2
3 /2 z

Φ()

e = β3/2.
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[O]#include "LS.ox"

class LSz : OneDimensionalChoice {
    static Run();
    EUtility();
    Uz(z);
    }
LSz::Run() {
    Initialize(new LSz());
    LS::Build(d);
    CreateSpaces();
    RVSolve();
    ComputePredictions();
    }
LSz::Uz(z) {
    LS::e = z;
    return LS::pi | LS::Earn(); 
    }
LSz::EUtility()    {
    decl pstar = 1-probn(zstar),
         sig   = LS::beta[3];
    LS::e = sig/2;
 return {  ( LS::pi | LS::Earn()*probn((zstar/sig-sig)/pstar))
              , (1-pstar)~pstar
            };
 } 

Appendix D: Estimation on Simulated Labor Supply Data
Code segment K estimated the labor supply model from external data. To use simulated data the code is
modified slightly:

    dta = new OutcomeDataSet("data",vi);
    dta -> Simulate(1000,40);
    dta -> ObservedWithLabel(m,M,obsearn);

The second line simulates 1000 observations over full 40 year lifetimes. The simulated data could be printed to
a file and then read in as segment M does. In this case the simulated data is already contained in the object so it
is ready to be used for estimation.

Abbreviated output is below. The code detects that none of the observations are full CCP because  is
unobserved. Since all actions and endogenous states  are observed all paths are categorized as IID. This means
niqlow will automatically sum over  to compute the likelihood but it is unnecessary to use the backward
Algorithm 6. The measurement error on noisy earnings is fixed at its true value. The result is convergence after
5 BHHH iterations with weak convergence. Because by default niqlow scales starting parameters the reported
standard errors would need to be re-scaled, or recomputed with scaling and constraining turned off (details
available in the documentation). Having started at the true parameter values, the sample likelihood is within
.01% of the initial value with some differences in parameter estimates, particularly the coefficient on experience
( ). 

e

θ

ϵ

M
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Figure A3. Output of MLE Estimates

Masking data for observability.
Path like type counts
    CCP    IIDPartObs
      0   1000      0
Report of Gradient Starting on lnklk
   Obj=          -29378.9180146
Free Parameters
         index          free
B0         0     1.00000000000
B1         1     1.00000000000
B2         2     1.00000000000
B3         3     1.00000000000
Actual Parameters
                  Value
B0         1.20000000000
B1       0.0900000000000
B2       -0.100000000000
B3        0.200000000000

1. f=-29375.8 deltaX: 0.32545 deltaG: 50.0006
        Output for iterations 1-4 removed Output for iterations 1-4 removed 
5. f=-29375.8 deltaX: 4.45343e-05 deltaG: 0.00906749

Finished: 3:WEAK
                          B0           B1           B2           B3
    Free Vector       1.0485      0.66901      0.97388      0.93059
    Gradient     -3.3945e-05  -4.1913e-05   0.00017144   1.0543e-05
   Std.Error        0.022743      0.14097     0.014054      0.18729

Report of  Iteration Done  on lnklk

   Obj=          -29375.7501799
Free Parameters
         index          free                  stderr
B0         0     1.04850905614   0.0227425353445
B1         1    0.669005636205    0.140973390182
B2         2    0.973884754314   0.0140539379652
B3         3    0.930592373935    0.187285663731
Actual Parameters
                  Value
B0         1.25821086737
B1       0.0602105072584
B2      -0.0973884754314
B3        0.186118474787
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